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hht code installation instructions with examples.

INTRODUCTION

The Fourier transform remains one of the most popular spec-
tral methods in time-series analysis, so much so that the word
“spectrum” is virtually equivalent to “Fourier spectrum”
(Huang ez al., 2001). This method assumes that a time series
extends from positive to negative infinity (stationarity) and
consists of a linear superposition of sinusoids (linearity). How-
ever, geophysical signals are never stationary and are not nec-
essarily linear. This results in a trade-off between time and
frequency resolution for nonstationary signals and the creation
of spurious harmonics for nonlinear signals. We present an
open-source implementation of the Hilbert—Huang transform
(HHT), an alternative spectral method designed to avoid the
linearity and stationarity constraints of Fourier analysis. The
HHT defines instantaneous frequency as the time derivative
of phase, illuminating previously inaccessible spectral details
in transient signals. Nonlinear signals become frequency mod-
ulations rather than a series of fitted sinusoids, eliminating ar-
tificial harmonics in the resulting spectrogram.

In this paper, we describe the HHT algorithm and present
our recently-developed hhr package for the R programming
language. This package includes routines for empirical mode
decomposition (EMD), ensemble empirical mode decomposi-
tion (EEMD) and Hilbert spectral analysis. It also comes with
high-level plotting functions for easy and accurate visualization
of the resulting waveforms and spectra. We demonstrate this
code by applying it to three signals: a synthetic nonlinear wave-
form, a transient signal recorded at Deception Island volcano,
Antarctica, and quasi-harmonic tremor from Reventador vol-
cano, Ecuador. The synthetic signal shows how the EMD
method breaks complex time series into simpler modes. It also
illustrates how the Hilbert transforms of nonlinear signals pro-
duce frequency oscillations rather than harmonics. The tran-
sient signal demonstrates the high-time/frequency resolution
of the HHT method. The volcanic-tremor signal has high-
frequency harmonics in the Fourier spectrogram, which are
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not present in the Hilbert spectrogram. The EMD of the
tremor signal also reveals unexpected transient events. Data
and code for each analysis are included in the ® electronic
supplement available with this paper.

THE HILBERT-HUANG TRANSFORM (HHT)

The HHT is a combination of the Hilbert transform and the
EMD algorithm.

The Hilbert Transform
The Hilbert transform for a function x(#) is the convolution:

H(x(z)) = ;—j * x(2). (1)

The Hilbert transform of a periodic function produces a
phase shift of 7/2 for positive frequencies, so:

H(cos(wr)) = sin(wr) (2)

results in the analytic function:

¥() = x(2) + H(x(2)). (€)

We can define the instantaneous amplitude 4(#) by taking
the magnitude of the real and imaginary components of y(#):

a(t) = Vx(2)* + H(x(?)), (4)

and the instantaneous phase ¢(z) by taking the arctangent of
the real and imaginary components of y(¢):

H(x(2))
x(z) )

@(¢) = arctan

The instantancous frequency w(¢) is the derivative of
phase with respect to time:

This definition is only meaningful for monocomponent
signals with a zero mean (Huang ez al., 1998). Otherwise, the
instantancous frequency does not reflect the actual frequency
content of the signal (Fig. 1).
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A Figure 1. Time/frequency plot of solid line, sin(2zt); and
dashed line, sin(2xt) 4+ 0.25; determined with the Hilbert
transform.

Empirical Mode Decomposition (EMD)

The EMD method breaks a time series into a small number of
monocomponent oscillatory modes called intrinsic mode func-
tions (IMFs; Huang ez al., 1998). Once the first IMF has been
calculated, it is subtracted from the original signal to produce
a residual. This residual is considered a new signal, and the
EMD is applied again. The process repeats until the residual no
longer contains any oscillations. Thus we can represent the
original signal x(#) as a sum of IMFs plus a residual:

x(t) = Z b, + 7. (7)

The EMD is an adaptive stepwise filter, in which each
successive IMF represents the highest-frequency mode in the
remainder. The final residual 7 is the data trend. Because each
IMF is locally symmetric and has no riding waves, it has a
meaningful Hilbert transform. The instantancous frequency
of each IMF can be plotted against time to produce a high-
resolution-ensemble spectrogram of the original signal.

Ensemble Empirical Mode Decomposition (EEMD)

IMF sets can suffer from mode mixing and lack of uniqueness.
Mode mixing consists of a single IMF containing signals of dif-
ferent time scales, or one signal scale residing on multiple IMFs
(Huang and Wu, 2008). This can result in frequency aliasing
in which IMFs transition from one scale to another. The EEMD
is a noise-assisted data analysis method designed to counteract
this problem. It repeatedly adds uniform white noise to the
signal, performs EMD, and averages the IMFs of ecach trial
together (Wu and Huang, 2009). As the number of trials
increases, the average of noise-perturbed copies of a signal
approach the true signal. The EEMD method greatly reduces
mode mixing and thus represents a significant improvement
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over EMD (Huang and Wu, 2008). Because cach EMD trial
is independent, the EEMD can be rapidly calculated on a com-
puter cluster.

THE HHT IN SEISMOLOGY

Earthquakes often have rapidly changing spectral characteris-
tics, and these details can be lost when seismograms are win-
dowed during Fourier spectral analysis. However, Hilbert
spectral analysis defines frequency for every single sample
point, permitting the identification and examination of tran-
sient events in complicated seismograms. The sharp frequency
resolution also bodes well for the development of more precise
methods of calculating dispersion curves; see Chen ez 4. (2002)
for a preliminary analysis using synthetic seismograms. The
EMD method also opens the door for new and improved signal
analysis techniques. For example, the IMF set can reveal fre-
quency gliding and modulations within a single mode, details
which could be lost through simple band-pass filtering. Higher
dimensional EMD methods might be able to extract polarity or
phase-arrival data from triaxial instruments (see Rehman and
Mandic, 2010), but this has not yet been tested on seismic data.

A HHT analysis of the 1999 Chi-Chi earthquake revealed
high-amplitude, low-frequency energy, which the Fourier and
wavelet transform did not show (Huang ez al., 2001). Another
study of the same carthquake discovered high-amplitude, low-
frequency ground-acceleration components in Fourier spectra
of IMFs generated by the EMD method (Loh ez al, 2000).
Zhang, Ma, and Hartzell (2003) used the EMD method to
quantify source and rupture-propagation information from
seismograms recorded during the 1994 Northridge earthquake,
producing results consistent with previous studies. Zhang ez al.
(2003) found that the HHT can extract low-frequency pulse-
like signals and other nonstationary features in earthquake re-
cords. Zhang (2006) compared Fourier-based and HHT-based
site-amplification factors for the 2001 Nisqually earthquake
and found that the two methods were equivalent for linecar
sites. However, when site nonlinearity was high, the HHT
site-amplification factor was larger than the Fourier site-
amplification factor in the low- to medium-frequency range.
The increased fidelity of HHT with respect to Fourier at low
frequencies has important consequences for long-period struc-
ture design, as it is precisely these frequencies that cause the
most damage.

THE HHT PACKAGE IN R

R is an open-source programming language designed for stat-
istical analysis and scientific computation (R Core Team,
2012). Binaries for basic R installations are available for
Windows, MacOS, and many UNIX systems. In addition, R can
be compiled from source. These installation options, as well as
extensive documentation and additional tools, are available at
http://www.r-project.org/ (last accessed April 2013). A wide
variety of other resources are available for learning R, ranging

in difficulty from beginning level (R for Dummies; de Vries and
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Meys, 2012) to ones that assume some programming experi-
ence (An Introduction to R, Venables et al., 2013).

Bundles of user-submitted, quality-controlled open-source
R code called packages are available for installation as well.
These packages greatly extend the core functionality in R. The
analyses and figures presented in this paper were prepared using
the hhr package (Bowman and Lees, 2013) The hht package
can be installed directly from R by typing the following com-
mand into the R interpreter:

> install. packages(“hht”)

Because bt depends on the EMD package (Kim and Oh,
2013) and the fields package (Furrer ez al., 2013), these are auto-
matically included in the installation process. Alternatively, the
hht package can be downloaded from the R package repository
at http://cran.r-project.org/ (last accessed April 2013), in
which case EMD and fields must be downloaded and installed
separately. MacOS users must download a FORTRAN compiler
from cran.r-project.org/bin/macosx/tools (last accessed April
2013) prior to installing 47 in cither case; however, UNIX and
Windows users should not require additional resources. Once
downloaded, the package is quite simple to use. Here we dem-
onstrate how to generate Figure 2 in this paper.

> library(hht) #Load the hht package
> set.seed(628) #initialize random number generator
> dt <-0.01 #Sample rate
> noise.amp <-0.1 #amplitude of random noise in signal
> tt <—segq,en (10000)*dt #Time steps
> sig <—c0S(2 * pi x tft + 0.5 % sin(4 x pi x tt))
+ sin(pi * tt/10)+
+ rnorm(length(tt),0,noise.amp) #Make signal
> emd.result <—Sig2IMF(sig, tt) #Run EMD method using
default parameters
> imf.list <—4:8 #Display IMFs 4-8. IMFs 1-3 are high
frequency noise so we omit them
> PlotIMFs(emd.result, imf.list = imf.list) #Make figure

Data and R code for each figure in this paper are included
in ® (see supplement). There do not appear to be any MAT-
LAB equivalents to the EMD or hht R packages, although a
couple of users have uploaded simple routines to the MATLAB
File Exchange website.

EXAMPLES OF NONLINEAR AND
NONSTATIONARY TIME SERIES

Synthetic Nonlinear Wave
The first example consists of a low-frequency sinusoidal carrier
wave, a nonlinear Stokian wave modified from equation 8.5 in
Huang ¢# al. (1998), and random noise. Our signal is of the
form

z
—1

x(¢) = cos[2zt + 0.5 sin(47z)] + Sin(lo

) ren, ()

in which &(#) is Gaussian random noise with a mean of 0 and a
standard deviation of 0.1. The Stokian component of this
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A Figure 2. IMFs 4-8 of the empirical mode decomposition (EMD)
of the signal given in equation (8). IMF 4 contains the 3 Hz
frequency-modulated Stokian component, IMF 5 contains the
1 Hz constant-frequency Stokian component, and IMF 8 contains
the 0.05 Hz carrier wave. IMFs 1-3 contain high-frequency low-
amplitude random noise and were not plotted.

equation creates a frequency-modulated signal centered at
3 Hz superimposed on a constant-frequency signal at 1 Hz.
The sinusoidal carrier wave has a frequency of 0.05 Hz.
The EMD method returns eight IMFs (Fig. 2). IMFs 1 through
3 are high-frequency noise from &(z). IMF 4 contains the
3 Hz frequency-modulated Stokian signal. The frequency-
modulated signal also appears in IMF 3 and 5 from time to
time. IMF 5 contains the 1 Hz constant-frequency Stokian
component, but this signal sometimes switches to IMF 6.
IMF 8 represents the 0.05 Hz carrier wave. Ideally, the high-
and low-frequency Stokian-wave components should be re-
turned in single IMFs, but both of them switch back and forth
between multiple IMFs. This intermittency can violate local
symmetry, introducing severe aliasing in the Hilbert transforms
of IMFs 3 through 6.

We applied the EEMD method to reduce the effects of
mode mixing. The resulting IMF set after 1000 trials at a noise
amplitude of 0.1 (Fig. 3) has much less mode mixing than the
raw IMF set (Fig. 2). The 3 Hz frequency-modulated Stokian
component now lies solely in IMF 4, the 1 Hz Stokian com-
ponent lies in IMF 5, and the 0.05 Hz carrier wave lies in
IMF 8. Although the sixth IMF still contains some intermit-
tency, the EEMD has clearly improved the quality of the origi-
nal IMF set. The Hilbert spectrum consists of all 1000 trials
plotted in the time/frequency domain. We sce a linear energy
band at 0.05 Hz, another linear energy band at 1 Hz, and an
oscillating energy band centered at 3 Hz, corresponding to the
three components of the signal as described above (Fig. 4).
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A Figure 3. IMFs 4-8 of the empirical mode decomposition
(EMD) of the signal given in equation (8). IMF 4 contains the
3 Hz frequency-modulated Stokian component, IMF 5 contains
the 1 Hz constant-frequency Stokian component, and IMF 8 con-
tains the 0.05 Hz carrier wave. IMFs 1-3 contain high-frequency
low-amplitude random noise and were not plotted.

Transient Event

Our next example is a transient signal recorded by an ocean-
bottom seismometer in the flooded caldera of Deception Island
volcano. The signal consists of a low-amplitude first arrival
followed by a much higher-amplitude second arrival approxi-
mately one second later. There are three main IMFs: a
high-frequency high-amplitude component, a low-frequency
high-amplitude component, and a low-frequency low-

amplitude component (Fig. 5). The high-frequency high-

A Figure 4. A close view of the Hilbert transform of the signal
given in equation (8). The oscillating energy band at 3 Hz corre-
sponds to the high-frequency Stokian component, the constant
band at 1 Hz represents the low-frequency Stokian component,
and the band at 0.05 Hz (at the bottom of the plot) represents
the carrier wave.
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A Figure 5. Ensemble empirical mode decomposition (EEMD) of a
signal recorded on the ocean floor inside the caldera of Deception
Island volcano, Antarctica.

amplitude component (IMF 1) has noticeable frequency modu-
lation. These three IMFs demonstrate the ability of the EMD
method to reveal hidden time scales in the data, including fre-
quency modulation that might have been lost had a band-pass
filter been used instead.

The Hilbert spectrogram of of the event shows a a high-
frequency phase between 10 and 20 Hz and a low-frequency
phase at approximately 4 Hz (Fig. 6). There is also a lower-
energy lower-frequency phase present in the first second of
the signal. All three components have a decreasing frequency
trend in the first half second of the signal, but the 4 Hz com-
ponent rises in frequency over the following 1.5 s. The com-
plicated structure in the high-frequency gliding phase as well as
the highly scattered frequencies at the signal onset are probably
a result of the sudden changes in frequency and amplitude in

the signal and may not reflect reality (Huang ez al., 1998).

Volcanic Tremor

Volcanic tremor is a long-duration seismic (and sometimes
seismoacoustic) signal produced by fluid flow in active
volcanoes. The Fourier spectrogram of volcanic tremor often
includes multiple harmonics and frequency gliding. We se-
lected an example of tremor recorded at Reventador volcano
(Lees et al., 2008) for analysis with the HHT. This tremor is
ideal because it includes periods of harmonic and nonharmonic
behavior as well as frequency gliding. Clear harmonics are
visible from approximately 30 to 160 s and again from 350 to
600 s in the Fourier spectrogram. The harmonics show fre-
quency gliding from approximately 30 to 120 s, with another
episode around 450 s (Fig. 7).

The averaged IMF set produced by EEMD shows that the
tremor is very complex (Fig. 8). Most energy lies in IMFs 3, 5,
and 6, with the other IMFs being cither very low amplitude or
comprised of combinations of the three main IMFs. For exam-
ple, the averaged IMF 4 is clearly a mixture of IMF 3 and 5,
because it contains high-frequency riding waves on top of
lower-frequency carrier waves, violating the definition of an
IMF. However, this IMF does contain pure signal, particularly
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A Figure 6. Hilbert spectrogram of a signal recorded on the ocean floor inside the caldera of Deception Island volcano,
Antarctica. Amplitude of trace and spectrogram in velocity (m/s).

near 60 s. The three well-resolved IMFs contain subtle struc- change with time (Fig. 9). However, the Hilbert spectrogram
tures, such as high-frequency spindle-shaped sequences and shows little energy above 3 Hz and almost none above 4 Hz,
bursts in IMF 3, an amplitude modulated signal in IMF 5, and whereas the Fourier spectrogram shows harmonics up to 6 Hz.

a lower-frequency episodic signal in IMF 6. Although the pres-
ence of episodic high frequencies is evident in the original sig-
nal, the pulsating structure of this high-frequency component
is only revealed through EMD.

Like the Fourier spectrogram, the Hilbert spectrogram
portrays this tremor signal as a series of frequency bands that

A Figure 7. Fourier spectrogram of volcanic tremor at Reventador A Figure 8. Ensemble empirical mode decomposition (EEMD) of
volcano. Spectrogram window length is 8 s, with a 7.94 s overlap volcanic tremor at Reventador volcano. IMFs 1-2 contained
and a 5% cosine taper. Trace amplitude in velocity (m/s). low-amplitude high-frequency random noise and were not plotted.
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A Figure 9. Hilbert spectrogram of volcanic tremor at Reventador
volcano. Trace and spectrogram amplitude in velocity (m/s).

The Fourier spectrogram does not show much energy below
1 Hz, whereas the Hilbert spectrogram does show significant

low-frequency energy between 300 and 600 s. The Hilbert

spectrogram also shows fewer frequency modes than the
Fourier spectrogram. There are two frequency bands from
40 to 200 s, as opposed to three main harmonics and over
ten minor harmonics in the Fourier spectrogram over the same
time interval. Also, the Hilbert frequency bands are located at
lower frequencies; for example, at 100 s the Hilbert modes are
at 1 and 1.75 Hz, whereas the Fourier modes are at about 1.75,
3.25, and 5 Hz. The Hilbert spectrogram bifurcates at about
350 s, with three low-frequency modes and one higher-
frequency mode. The higher-frequency mode is noisier but
appears to glide over a greater frequency range than the other
modes. The Fourier spectrogram also shows four modes, but
they are higher frequency and also contain more energy in the
two lower-frequency modes, whereas the Hilbert spectrogram
shows the most energy in the two higher-frequency modes.

The Hilbert spectrogram of the tremor signal between 454
and 470 s shows three frequency bands: a low-energy one at
about 0.75 Hz, a high-energy one at about 1.3 Hz, and a
strongly modulated one at 3 Hz (Fig. 10). The lower-frequency
band dies out at 458 s, and the modulated signal grows in am-
plitude at that time. The middle-frequency band loses energy
just before 460 s, and the modulated signal grows even more
energetic. Both lower bands regain energy at about 466 s
whereas the modulated signal loses amplitude. The Hilbert
spectrogram clearly portrays the complicated interaction of
three different signals over a very short time frame.

A Figure 10. Hilbert spectrogram of volcanic tremor at Reventador volcano. Trace and spectrogram amplitude in velocity (m/s).
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DISCUSSION

The HHT combines the precision of the Hilbert transform
with an adaptive signal decomposition method. Although
any signal can be represented as a linear combination of arbi-
trary-basis functions that span the data space, choosing the
wrong basis function can greatly increase the number of terms
required to fit the time series. For example, the Fourier method
uses sinusoidal-basis functions, resulting in the production of
numerous (possibly infinite) harmonics when a nonsinusoidal
signal is processed. Because the EMD method chooses the basis
functions from the properties of each individual signal, it
greatly reduces the number of terms required to represent the
signal in both the time and frequency domains. Not only does
this minimize the number of parameters that need to be mod-
eled in order to reproduce the signal, it also prevents spectral
energy from bleeding into nonphysical harmonics, which can
obscure the true frequency content of the time serics.

The HHT also has disadvantages compared to other spec-
tral analysis methods. The EMD is computationally expensive,
especially when the time series is long, has a large frequency
distribution, and/or has a high sample rate. Random noise can
perturb IMF sets, an effect that the EEMD method can
generally correct at the expense of even more computer time.
The HHT method will generally return the Fourier compo-
nents of a simple linear signal. However, because the EMD
method relies on extrema to separate IMFs from the signal,
it can fail to split a low-amplitude Fourier component from
a high-amplitude Fourier component if the higher-frequency
mode does not produce extrema. This may indicate that the
signal is nonlinear when in fact it is a superposition of two
sinusoids. Ditig and Schlurmann (2004) provide a rigorous
analysis of this phenomenon. They also find that improper
spline fitting can have a deleterious effect on the EMD.
Kijewski-Correa and Kareem (2006) verify the inability of
the EMD to handle closely spaced waves, and they point
out instances in which amplitude modulation in the time series
produces nonphysical frequency modulation in the Hilbert
spectrogram. They also find that the wavelet spectrogram
can match the precision of the Hilbert spectrogram if the
appropriate wavelet is chosen. E{
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