Electronic Supplement to
Recurrent Holocene Movement on the Susitna Glacier Thrust Fault: The Structure that Initiated the Mw 7.9 Denali Fault Earthquake, Central Alaska

by Stephen F. Personius, Anthony J. Crone, Patricia A. Burns, and Nadine G. Reitman

This electronic supplement contains supporting figures and text for discussions of OxCal chronological modeling (Bronk Ramsey, 2001, 2009) and fault-dip measurements presented in the main article. Figure S1 shows the OxCal models of published age constraints on two tephras observed in this investigation, and Figure S2 consists of maps showing locations and data from two sites used to calculate near-surface dip in the vicinity of the Wetfan trench site. This supplement also contains computer code for three OxCal chronological models presented in the main article (Fig. 8 in the main article) and two OxCal models of radiocarbon age constraints on the ages of two regional tephra layers (Fig. S1).


Figures

Figure S1. OxCal models of published age constraints on tephra exposed at the Wetfan trench site. (a) OxCal model of calibrated age of Oshetna tephra using age constraints of Child et al. (1998, their table 3). (b) OxCal model of calibrated age of Jarvis creek ash using age constraints of Begét et al. (1991, their table 1).

Figure S2. Map showing locations and data used to measure near-surface dips of the Susitna Glacier fault in the vicinity of the Wetfan trench site (see Fig. 8 in the main article for locations). Thin lines are elevation contours used in measurements. (a) Three-point measurement across “Lake 3395 valley,” just west of the Wetfan site; (b) three-point measurement across “Three-point canyon” of Crone et al. (2004).


Computer Code for Five OxCal Chronological Models Presented in the Main Article

OxCal (v.4.2.4) Code for Model Shown in Figure 8a in the Main Article

Plot()

 {

 Sequence("Susitna_Glacier_fault_model_02_08_2017_1c")

  {

   Boundary("Start sequence");

   Phase("Wet Fan deposition")

   {

    C_Date("Oshetna tephra", -4600, 90);

    R_Date("WF01-R7d", 5785, 40);

    R_Date("WF01-R3", 4005, 35);

    R_Date("WF03-R2b", 3195, 35);

    R_Date("WF01-R7c", 3040, 35);

   };

   //R_Date("published Jarvis Creek tephra age", 3660, 125);

   //C_Date("calibrated Jarvis Ck tephra _this study ", -1560, 130);

   Date("SGF site Jarvis Ck tephra age");

   Phase("Post-Jarvis-Ck-tephra fan deposition")

   {

    R_Date("WF03-R2t", 2475, 40);

    //R_Date("WF01-R7b", 2245, 35);

   };

   Date("SGF EQ P2");

   Phase("Post-EQ P2 deposition")

   {

    R_Date("WF03-R1", 2510, 40);

    R_Date("WF01-R6", 1920, 40);

    R_Date("WF01-R7a", 820, 45);

   };

   C_Date("2002 EQ", 2002, 0);

   Boundary("Boundary end", 2015);

  };

 };

OxCal (v.4.2.4) Code for Model Shown in Figure 8b in the Main Article

Plot()

 {

 Sequence("Susitna_Glacier_fault_model_02_08_2017_2c")

  {

   Boundary("Start sequence");

   Phase("Wet Fan deposition")

   {

    C_Date("Oshetna tephra", -4600, 90);

    R_Date("WF01-R7d", 5785, 40);

    R_Date("WF01-R3", 4005, 35);

    R_Date("WF03-R2b", 3195, 35);

    R_Date("WF01-R7c", 3040, 35);

   };

   //R_Date("published Jarvis Creek tephra age", 3660, 125);

   //C_Date("calibrated Jarvis Ck tephra _this study ", -1560, 130);

   Date("SGF site Jarvis Ck tephra age");

   Phase("Post-Jarvis-Ck-tephra fan deposition")

   {

    R_Date("WF03-R2t", 2475, 40);

    R_Date("WF01-R7b", 2245, 35);

   };

   Date("SGF EQ P2");

   Phase("Post-EQ P2 deposition")

   {

    R_Date("WF01-R6", 1920, 40);

    R_Date("WF01-R7a", 820, 45);

   };

   C_Date("2002 EQ", 2002, 0);

   Boundary("Boundary end", 2015);

  };

 };

OxCal (v.4.2.4) Code for Model Shown in Figure 8c in the Main Article

Plot()

 {

  Sequence("Susitna_Glacier_fault_model_02_8_2017_3a+diff")

  {

  Boundary("Start sequence");

  Phase("Wet Fan deposition")

   {

    C_Date("Oshetnash", -4800, 90);

    R_Date("WF01-R7d", 5785, 40);

    R_Date("WF01-R3", 4005, 35);

    R_Date("WF03-R2b", 3195, 35);

    R_Date("WF01-R7c", 3040, 35);

   };

   //R_Date("published Jarvis Creek tephra age", 3660, 125);

   //C_Date("calibrated Jarvis Ck tephra _this study", -1560, 130);

   Date("SGF site Jarvis Ck tephra age");

   Phase("Post-Jarvis-Ck-tephra fan deposition")

   {

    R_Date("WF03-R2t", 2475, 40);

   };

   Date("SGFEQP2");

   Phase("Post-EQ P2 deposition")

   {

    R_Date("WF01-R6", 1920, 40);

    R_Date("WF01-R7a", 820, 45);

   };

   C_Date("SGFEQ2002", 2002, 0);

   Boundary("Boundary end", 2015);

  };

  Page( );

  Difference("2002 EQ to PE interval", "SGFEQP2", "SGFEQ2002");

  Difference("Oshetna tephra to PE interval", "Oshetnash", "SGFEQP2");

 };

OxCal (v.4.2.4) Code for Model Shown in Figure S1a

Plot()

 {

 Sequence("Susitna_Oshetna ash age_Child et al 1998_ 02_08_2017_2")

  {

   Boundary("Start Sequence");

   Phase("pre-tephra ages")

   {

    R_Date("WL18B-101-103", 10060, 70);

    R_Date("SP16B-67-68", 6060, 60);

    R_Date("WL9B2-36-42", 6020, 60);

   };

   Date("Oshetna tephra");

   Phase("post-tephra ages")

   {

    R_Date("WL9B2-20-24", 5850, 60);

    R_Date("SP16B-23-24", 3830, 60);

   };

   Boundary("End Sequence");

  };

 };

OxCal (v.4.2.4) Code for Model Shown in Figure S1b

Plot()

 {

 Sequence("Susitna_Jarvis Ck ash age 02_08_2017-2")

  {

   Boundary("Start Sequence");

   Phase("pre-tephra ages")

   {

    R_Date("ATC 639", 6705, 280);

    R_Date("ATC 642b", 6115, 100);

    R_Date("ATC-633b", 5900, 250);

    R_Date("ATC 641", 5095, 180);

    R_Date("ATC-634", 4650, 250);

    R_Date("221-G", 4120, 190);

    R_Date("ATC-635b", 4350, 140);

    R_Date("ATC-643", 3780, 80);

    R_Date("ATC-637b", 3660, 275);

    R_Date("ATC-642a", 3305, 105);

   };

   Date("Jarvis Creek Ash");

   Phase("post-tephra ages")

   {

    R_Date("ATC-637a", 3360, 200);

    R_Date("ATC-635a", 3120, 210);

    R_Date("TL-3", 2485, 75);

    R_Date("TL-7", 2425, 75);

    R_Date("ATC-633a", 2300, 180);

    R_Date("ATC-634a", 1950, 150);

   };

   Boundary("End Sequence");

  };

 };


References

Begét, J. E., R. D. Reger, D. Pinney, T. Gillispie, and K. Campbell (1991). Correlation of the Holocene Jarvis creek, Tangle Lakes, Cantwell, and Hayes tephras in south-central and central Alaska, Quaternary Res. 35, 174–189.

Bronk Ramsey, C. (2001). Development of the radiocarbon program OxCal, Radiocarbon 43, 355–363.

Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates, Radiocarbon 51, 337–360.

Bronk Ramsey, C., and S. Lee (2013). Recent and planned developments of the program OxCal, Radiocarbon 55, 720–730.

Child, J. K., J. E. Begét, and A. Werner (1998). Three Holocene tephras identified in lacustrine sediment cores from the Wonder Lake area, Denali National Park and Preserve, Alaska, U.S.A., Arctic Alpine Res. 30, 89–95.

Crone, A. J., S. F. Personius, P. A. Craw, P. J. Haeussler, and L. A. Staft (2004). The Susitna Glacier thrust fault—Characteristics of surface ruptures on the fault that initiated the 2002 Denali fault earthquake, Bull. Seismol. Soc. Am. 94, no. 6B, S5–S22.

Reimer, P. J., E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, H. Cheng, R. L. Edwards, M. Friedrich, et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon 55, no. 4, 1869–1887.

[ Back ]