
1

EQ Simulator Container File Format
Michael Barall 06/28/2010

Version 0.4

Note: Container format version 0.4 is identical to version 0.3.

1. Purpose and Goals of the Container Format

For earthquake simulators, we need files that can hold different types of data. For example, we

want to use meshes which can contain either rectangles or triangles.

The container format provides a standard way for a file to describe its own contents. This makes

it possible to put different types of data into a file without the use of ad hoc rules, and to add

more types of data in the future. The input and output file formats are all special cases of the

container format, and we expect that in the future other files can use the container format as well.

Specific goals of the container format are:

 Be very easy to read and write, using either C/C++ or Fortran.

 Be extensible. It is possible to add more data to a file (either additional data fields within

a record, or additional kinds of records) without breaking existing code that reads the file.

 Be self-describing. Software can determine what data is in the file, select the portion of

interest, and skip over anything not of interest (even if it doesn’t understand the

uninteresting portion).

 Be sufficiently similar to the simple ASCII tables used in the past, so that simulator codes

will not require extensive revision to use these files.

2

2. Units

All physical quantities appearing in a file are expressed in SI units.

All angles appearing in a file are expressed in decimal degrees.

This simple rule eliminates any confusion about the appropriate units to use. It also eliminates

the need to devise formats and computer codes that work with multiple units.

3

3. Container File Structure

A container file is an ASCII text file.

Each line in the file is one record.

The file is divided into 7 parts as shown below.

 Part Description

1 Signature One line that identifies the type of data in the file, and marks the start of

the file.

2 Metadata Multiple lines that contain data about the file, such as title, author, and

date.

3 End-of-metadata One line that marks the end of the metadata and start of the descriptors.

4 Descriptor Multiple lines that describe the data records and data fields contained in

the file.

5 End-of-descriptor One line that marks the end of the descriptors and start of the data.

6 Data Data, one record per line.

7 End-of-file One line that marks the end of the file.

Parts 1 through 5 are collectively called the file header.

The specific types of records that may appear in each part of the file are described later.

The file header may appear to be complicated, but it is easy to deal with because the header

is fixed for any given file format.

 You can write a file by writing out the fixed header, with your metadata inserted in the

appropriate places. Then write your data one record to a line, followed by a final record at

the end of the file. The only reason why you would need to change the header is if you

are including extra data in your file.

 When you read a file, you can easily skip over the header and get straight to the data

records. Then read your data one record at a time, stopping when you encounter the end-

of-file record. If you want to be more sophisticated, you can examine the header to find

more information about the file. The amount of header information that you use is

entirely up to you.

4

4. Record Structure

Each record occupies one line in the file. Each record must have the following format:

 Character positions 1-3 hold a 3-digit number, which identifies the kind of record.

 Character position 4 must be a blank space.

 Character positions 5 and above hold the content of the record.

The content of the record is not allowed to be blank. The total length of a record is limited to a

maximum of 2504 characters (not including any linefeed or carriage return character that marks

the end of the line). Therefore, the content of the record can be a maximum of 2500 characters.

For example, a comment record is identified by number 100. So a comment record could be:

100 This is a comment

For another example, this could be a data record of kind 200 that contains three numeric values:

200 1.234E+03 93.82 -0.462

5

5. Control Records

The following table shows the kinds of records that control the overall structure of the file.

Kind Description

100 Comment record

101 Signature record

102 End-of-metadata record

103 End-of-descriptor record

999 End-of-file record

Each kind of record is described below. For each record, we give the general format, an example,

and an explanation.

5.1. Comment Record

100 comment-text

100 This is a comment

The comment record lets you insert comments into the file. The comment record may appear

anywhere in the file, except that it may not appear before the signature record or after the end-of-

file record. Note that the comment-text cannot be blank.

When reading the file, you should skip over any comment records.

5.2. Signature Record

101 signature-keyword spec-level

101 EQSim_Input_1 1

The signature record must be the first record in the file. The signature-keyword is a word that

identifies what type of data is in the file. The documentation for each particular type of file will

identify the required keyword. Keywords are case-sensitive.

6

The keyword can contain letters, digits, and the following special characters: underscore,

hyphen, plus, and period. Its maximum length is 100 characters.

The spec-level is an integer that gives the specification level, which is the revision level of the

specification document. Any time a file format is changed to include additional data, the

specification level is increased. (The additional data may take the form of new kinds of data

records, or new fields added to existing kinds of data records.)

Code that is designed to read a particular specification level will also be able to read any higher

specification level. It will automatically skip over the additional data present at the higher

specification level.

When reading the file, we recommend that you check the signature record to make sure the file

contains what you are expecting it to contain. The correct way to check is: (a) check the

signature-keyword to verify it has the value you expect, and (b) check the spec-level to verify

that it is greater than or equal to the value you expect.

Note: If a file format is ever changed in a way that makes it incompatible with existing software,

then the signature keyword must be changed so the new file format cannot be accidentally given

to old software.

5.3. End-of-Metadata Record

102 End_Metadata

102 End_Metadata

The end-of-metadata record must appear after the last metadata record and before the first

descriptor record. It marks the end of the metadata and the beginning of the descriptors. The

string “End_Metadata” must appear in the record exactly as shown.

The end-of-metadata record must appear even if there is no metadata.

5.4. End-of-Descriptor Record

103 End_Descriptor

103 End_Descriptor

7

The end-of-descriptor record must appear after the last descriptor record and before the first data

record. It marks the end of the file header and the beginning of the data. The string

“End_Descriptor” must appear in the record exactly as shown.

5.5. End-of-File Record

999 End

999 End

The end-of-file record must be the last record in the file. The string “End” must appear in the

record exactly as shown.

When reading the file, the end-of-file record tells you when to stop.

8

6. Metadata Records

The following table shows the kinds of records that may appear in the metadata part of the file.

Kind Description

110 Information record

111 Title record

112 Author record

113 Date record

In the metadata part of the file, records do not have to appear in any particular order.

All metadata records are optional. When writing a file, you can omit the metadata part entirely if

you want to. But we recommend that you include at least a title record.

Each kind of metadata record is described below. For each record, we give the general format, an

example, and an explanation.

6.1. Information Record

110 information-text

110 Created by Acme EQ simulator version 0.12.

110 Duration: 10000 years.

The information record lets you insert anything you want into the metadata portion of the file.

Note that the information-text cannot be blank.

6.2. Title Record

111 title-text

111 Problem 3, Acme Simulator

The title record should contain a concise summary of the file. Note that the title-text cannot be

blank.

9

There should be at most one title record in a file.

In principle the title-text can be up to 2500 characters long. In practice, code that reads the file

may truncate the title to approximately 80 characters, so the most important information should

be listed first.

6.3. Author Record

112 author-text

112 Joe Simulator, University of Somewhere

The title record should identify the author responsible for the file. Note that the author-text

cannot be blank.

There can be multiple author records if needed.

6.4. Date Record

113 date-text

113 03/31/2010 22:04:10

The date record should identify when the file was created. The date-text is text that gives a date

and time.

You may select whatever date and time format you wish. The example above shows a

recommended format for March 31, 2010, at 10:04:10 PM.

There should be at most one date record in a file.

10

7. Descriptor Records

The following table shows the kinds of records that may appear in the descriptor part of the file.

Kind Description

120 Record descriptor record

121 Field descriptor record

The descriptor part of the file describes the data that the file contains.

Each kind of data record that appears in the file must have corresponding entries in the

descriptor part of the file. For each kind of data record, there is one record descriptor record,

followed by one or more field descriptor records.

It is OK to include descriptors for a kind of data record that does not actually appear in the file.

This makes it possible to write a fixed header, without knowing in advance which kinds of data

records will end up in the file.

Each kind of descriptor record is described below. For each record, we give the general format

and an explanation. An example follows at the end of the section.

7.1. Record Descriptor Record

120 kind name n_field comment-text

This describes a kind of data record. The items appearing in the record are shown in the

following table.

 Item Type Description

1 kind integer An integer in the range 200 to 399 that gives the kind of data record

being described.

2 name character A character string that gives the name of the data record. The character

string must consist of letters, digits, and the special characters

underscore, hyphen, plus, and period. Its maximum length is 100

characters.

3 n_field integer An integer giving the number of fields in the data record. It must be in

the range 1 to 100.

11

The items must be separated by one or more blank spaces. The comment-text is optional, but if

included it must be separated from the last item by one or more blank spaces.

7.2. Field Descriptor Record

121 index name type comment-text

This describes one field within a data record. The items appearing in the record are shown in the

following table.

 Item Type Description

1 index integer An integer in the range 1 to 100 that gives the position of the field within

the data record. It must be 1 for the first field descriptor following a

record descriptor, and must be incremented by 1 for each succeeding field

descriptor for the same kind of record.

2 name character A character string that gives the name of the field. The character string

must consist of letters, digits, and the special characters underscore,

hyphen, plus, and period. Its maximum length is 100 characters.

3 type integer An integer giving the type of data in the field. The allowed values are:

1 – Integer.

2 – Real number.

3 – Character string.

The items must be separated by one or more blank spaces. The comment-text is optional, but if

included it must be separated from the last item by one or more blank spaces.

7.3. Example

120 201 station-pga 5 PGA recorded at a station

121 1 id 1 Station identification number

121 2 name 3 Station name

121 3 pga-ns 2 North-south PGA, + = north

121 4 pga-we 2 West-east PGA, + = east

121 5 pga-v 2 Vertical PGA, + = up

12

This example shows descriptors for a hypothetical data record that might be used to hold the

peak ground acceleration recorded by a seismometer station.

The record is named “station-pga” and is kind 201. It has 5 data fields. The first field is an

integer called “id” that holds the station identification number. The second field is a character

string called “name” which holds the station name. The third, fourth, and fifth fields are real

numbers called “pga-ns”, “pga-we”, and “pga-v” which hold the peak ground acceleration in

three directions.

The following is an example of what a corresponding data record might look like.

201 1184 Firehouse27 7.632e-02 -1.021e-01 8.906e-03

13

8. Data Records

The following table shows the kinds of records that may appear in the data part of the file.

Kind Description

200-299 Standardized data record

300-399 Private data record

The data part of the file contains the data.

Data appears as a series of records. Each record contains a sequence of fields. Each field contains

an integer, a real number, or a character string. In addition, a record may optionally contain a

comment.

There are two categories of data record. A standardized data record is a data record that is

defined in some standards document, for example, the document that defines the simulator input

file format. Standardized data records are used to transfer data from one program to another

program. A private data record is a data record that you invent yourself, for your own private

purposes.

Each kind of data record that appears in the file must have corresponding entries in the

descriptor part of the file.

Note that it is not possible for a record to contain a variable number of fields. The number of

fields is fixed, at the value given in the descriptor part of the file.

8.1. Standardized Data Record

kind field-1 ... field-N comment-text

A standardized data record begins with a number in the range 200-299 that gives the kind of

record. Then comes a series of fields, which are shown above as “field-1” through “field-N”.

Fields must be separated by one or more blank spaces. (Tab characters are not allowed as field

separators.) Each field must contain one of the following:

 An integer. It is a decimal integer, optionally preceded by a plus or minus sign. Leading

zeros should not be used. Examples: 17, -358, 0, +34.

 A real number. It may be given in three forms: (a) A decimal integer, optionally preceded

by a plus or minus sign. Examples: 23, -76. (b) A fixed-point number like sdd.dddd,

14

where d is a decimal digit and s is an optional plus or minus sign. Examples: -84.8521,

0.0035. (c) A floating-point number like sd.ddddEsdd, where d is a decimal digit and s is

an optional plus or minus sign. The exponent separator may be E or e, and the decimal

point is optional. Examples: 5.152E+02, -34.895e-06.

 A character string. It must consist of letters, digits, and the following special characters:

underscore, hyphen, plus, and period. The maximum permitted length is 100 characters.

Notice that character strings cannot be empty, cannot contain blank spaces, and cannot

contain any special characters other than the four just mentioned.

The comment-text is optional, but if included it must be separated from the last field by one or

more blank spaces.

A standardized data record is described by some standard document. The document will give the

following information:

 The name of the record.

 The number of fields.

 The name of each field.

 The type of data (integer, real, or character) in each field.

When writing a file, it is acceptable for you to include additional fields, following the fields

mandated by the standard document. For example, if your earthquake simulator produces some

output that other simulators do not, you could include that extra output as additional fields in the

data record.

If you include additional fields, you must list the additional fields in the descriptor part of the

file. This ensures that tools will be able to recognize the presence of the additional fields.

If you include additional fields, and the file is read by a program that is not aware of the

additional fields, then the additional fields will become part of the comment-text for the record.

So, the presence of the additional fields causes no harm.

8.2. Private Data Record

kind field-1 ... field-N comment-text

A private data record has the same format as a standardized data record, except that the kind is in

the range 300-399.

15

A standard document will never define a data record of kind 300-399. So, you are free to invent

private data records for your own purposes.

If you write a file that contains private data records, you must describe them in the descriptor

part of the file.

When the file is read by a program that does not understand your private data records, the

program simply skips over the private data records as if they were comments.

In general, whenever you read a file you should skip over any private data records you find,

unless you are re-reading a file that you wrote yourself.

