
The Antelope Relational Database System

Datascope: A tutorial

The information in this document has been reviewed and is believed to be reliable.
Boulder Real Time Technologies, Inc. reserves the right to make changes at any
time and without notice to improve the reliability and function of the software

product described herein.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission of Boulder Real Time

Technologies, Inc.

Copyright © 2002 Boulder Real Time Technologies, Inc. All rights reserved.

Printed in the United States of America.

Boulder Real Time Technologies, Inc.
2045 Broadway, Suite 400

Boulder, CO 80302

Datascope: A Tutorial iii

CHAPTER 1 Overview 1
Datascope: What is it? ...1
Datascope: Features ...2
Datascope: What is it good for?.................................3

CHAPTER 2 Test Drive 5
What is a relational database?6
dbe: a window on a database6
Viewing a table ...7
Viewing schema information.......................................7
Performing a join ..9
What about the join conditions?10
Arranging fields in a window....................................11
Viewing data in a record view...................................12
Other database operations13
Creating a subset view ..14
Using dbunjoin to create a subset database15
Editing a database ..16
Simple graphing..17
Summary ...19

CHAPTER 3 Schema and Data Representation 21
Database Descriptor Files..21
Representation of Fields ...22
Schema Description File...23
Schema Statement ...23
Attribute Statement ...24
Relation Statement ..25
Datascope Views ...26
Reserved Names for Fields and Tables27
A word of caution regarding id fields29

CHAPTER 4 Basic Datascope Operations 31
Reading and Writing Fields and Records31
Deleting Records ..31

iv Datascope: A Tutorial

Subsets ..32
Sorts ..32
Grouping...32
Joining Tables ...32
Inferring Join Keys ...34
Inheritance of keys ..34
Specifying Join Keys ...35
Speed and efficiency..35
Summary ...36

CHAPTER 5 Expression Calculator 37
Basic Operators and Database Fields......................38
Data Types ..39
String Operations ...39
Logical Operators...41
Assignments ..43
Standard Math Functions ...43
Time Conversion ...44
Spherical Geometry ..45
Seismic Travel Times ..46
Seismic and Geographic Region functions47
Conglomerate functions..48
External functions...48

CHAPTER 6 Programming with Datascope 49
Sample Problem..50
At the command line ...52
Database pointers...53
A few programming utilities54
Error Handling ...55
Time conversion ..55
Associative Arrays ..56
Lists...56
Parameter files ..56
Overview of tcl, perl, c, and fortran solutions56
Tcl/Tk interface...57
The perl interface ...59
The c interface ..60

Datascope: A Tutorial v

The FORTRAN interface ..61
Summary ...63

CHAPTER 7 Datascope Utilities 65
dbverify ...65
dbcheck ...65
dbdiff ...66
dbdoc ..66
dbset..66
dbfixids..66
dbcrunch ...66
dbnextid ..66
dbcp ..67
dbremark...67
dbaddv ..67
dbcalc ...67
dbconvert ..67
dbdesign..67
dbinfer...68
dbdestroy...68

vi Datascope: A Tutorial

Datascope: A Tutorial 1

CHAPTER 1 Overview

Antelope is a collection of software which implements the acquisition, distribution
and archive of environmental monitoring data and processing. It provides both
automated real time data processing, and offline batch mode and interactive data
processing. Major parts of both the real time tools and the offline tools are built on
top of the Datascope relational database system. This tutorial explains some basic
concepts behind relational database systems and how these concepts appear in
Datascope.

Datascope: What is it?

Datascope is a relational database system in which tables are represented by fixed-
format files. These files are plain ASCII files; the fields are separated by spaces and
each line is a record. The format of the files making up a database is specified in a
separate schema file. The system includes simple ways of doing the standard opera-
tions on relational database tables: subsets, joins, and sorts. The keys in tables may
be simple or compound. Views are easily generated. Indexes are generated automat-
ically to perform joins. General expressions may be evaluated, and can be used as
the basis of sorts, joins, and subsets.

The system provides a variety of ways to use the data. There are c, FORTRAN,
tcl/tk and perl interfaces to the database routines. There are command line utilities
which provide most of the facilities available through the programming libraries.

Overview

2 Datascope: A Tutorial

There are a few GUI tools for editing and exploring a database. And, since the data
is typically plain ASCII, it’s also possible to just use standard UNIX tools like sed,
awk, and vi.

Datascope: Features
• Datascope is small, conceptually simple, and fast.

• Datascope has interfaces to several languages (c, FORTRAN, tcl/tk, perl and
MATLAB), a command line interface, and GUI interfaces. These provide a
wide range of access methods into databases.

• Datascope does not provide access through a specialized query language, such
as SQL.

• Datascope provides most of the features of other commercial database systems,
including:

•data independence

•schema independence

•view generation through joins, subsets, sorts, and groups

•automatic table locking to prevent database corruption when multiple users
are adding records to a table

• The organization of tables and fields within a Datascope database is specified
with a plain text schema file. This schema file, in addition to specifying the
fields which make up tables, and the format of individual records in every table,
provides a great deal of additional information, including:

•short and long descriptions of every attribute and relation

•null values for each attribute

• a legal range for each attribute

•units for an attribute

•primary and alternate keys for relations.

• foreign keys in a relation

This additional information is useful for documenting a database, and makes it easier
for a newcomer to learn a new database.

Datascope: A Tutorial 3

• The detailed schema often makes it possible to form the natural joins between
tables without explicitly specifying the join conditions.

• Datascope schema files and database tables are stored in normal ASCII files on
the UNIX file system. These files can be viewed and edited using normal text
editors (although it is inadvisable to hand edit database tables). File access per-
missions are controlled through the normal UNIX file permissions.

• The keys in Datascope tables may include ranges, like a beginning and an end-
ing time. This is useful, and sometimes essential, for time dependent parame-
ters, like instrument settings. Indexes may be formed on these ranges, and these
indexes can considerably speed join operations. (When two tables are joined by
time range keys, the join condition is that the time ranges overlap.)

• Datascope has an embedded expression calculator which can be used to form
joins, sorts and subsets. This calculator contains many functions which are
peculiar to environmental science applications, such as spherical geometry,
exhaustive time conversion functions and seismic travel time functions.

Datascope: What is it good for?

Relational database systems are a proven method for representing certain types of
information, much more powerful than the traditional grab-bag approach of data
files, log files, handwritten notes, and ad hoc data formats. Datascope is a general-
purpose relational database management system which is ideal for managing the
large and complex data volumes that are produced by a modern environmental
monitoring network. It is relatively easy and intuitive when compared to other com-
mercial database products. It provides a way of moving from the traditional pleth-
ora of formats to a better approach which organizes the data, documents it, and
provides powerful tools for manipulating it.

Datascope should be useful to anyone who needs to organize data and is interested
in applying relational database technology, but can’t afford the time, learning,
development, and people resources which most other commercial database systems
require.

Overview

4 Datascope: A Tutorial

Datascope: A Tutorial 5

CHAPTER 2 Test Drive

Learning a database system such as Datascope takes some time and involves at least
the following steps:

• learning about relational databases in general

• learning the tools and operations a particular DBMS provides

• learning a particular database schema

• learning a particular database

This chapter gives a whirlwind tour of a small example database, using the general
purpose Datascope tool dbe. This will get your feet wet, show you quickly how to
do a variety of useful things, and get you started learning about relational databases
in general, and Datascope in particular.

Datascope was originally developed for seismic applications and the demo database
has seismic data. It contains data recorded at seismic stations around the world and
parameter data describing those instruments (location, gains, orientation). This is
the “raw data” part of the database. In addition, the database contains information
which is derived from the raw data, typically information about earthquakes: loca-
tion, size, and first arrivals of seismic energy from various earthquakes at the vari-
ous stations.

Test Drive

6 Datascope: A Tutorial

What is a relational database?

A database can be any collection of information, hopefully organized in some fash-
ion that makes it easy to find a particular piece of information. Relational databases
organize the data into multiple tables. Each table is made up of records, and each
record has a fixed set of fields (sometime referred to as “attributes”). The structure
of a database, i.e. the tables and the fields which make up a record, is called the
schema. The schema for our demo is a variation of a schema developed at the Cen-
ter for Seismic Studies.

A standard reference text for databases is “An Introduction to Database Systems”,
by C.J. Date. Start with it if you would like to learn more about relational databases
in particular.

dbe: a window on a database

dbe is a general purpose tool for exploring, examining, and editing a relational data-
base. It provides in a single interactive, graphical tool most of the functionality pro-
vided by Datascope. Because it is window and menu driven, it is fairly easy to
learn. This discussion will lead you through a session with dbe, but probably the
best way to learn it is to explore on your own. Follow along with this discussion by
running dbe on the demo database that comes with the Antelope distribution and is
normally installed in /opt/antelope/data/db/demo.

Begin in an empty directory where you can write files, and start dbe:

% dbe /opt/antelope/data/db/demo/demo

This brings up a database window with multiple buttons, one for each table of the
demo database.

Datascope: A Tutorial 7

Viewing a table

Press the button labeled wfdisc. This brings up a new spreadsheet-like window on
the wfdisc table.

The window title is the name of the table. Beneath it is a menu bar, and directly
beneath that is a text entry area. This entry area is used both for directly editing
fields, and for various operations which require text input, like entering an expres-
sion or searching for a particular value.

The main portion of the window has a column for each field, up to the limit of what
will fit on the screen. The scrollbar on the left controls the range of records dis-
played, while the scrollbar on the bottom may be used to scroll by column, and
show the columns which didn’t fit on the screen.

At the top of each column is a column header button showing the field name. These
buttons bring up menus which allow several column specific operations like sorting,
searching, or editing.

Viewing schema information

One entry of the header button shows detail information about field. There is similar
information about the table under the Help->On wfdisc far right menu of the
menubar. For even more information about the schema, try the Help->On Schema
option; this brings up a window with buttons for each table:

Test Drive

8 Datascope: A Tutorial

Each table button brings up a window describing that table, showing the keys and
other information from the schema. And they contain buttons for each field of the
table. Press the wfdisc button, bringing up the window for the wfdisc table.

Datascope: A Tutorial 9

Press a field button to bring up a window showing information about a field. The
row of table buttons at the bottom shows each table which uses this field.

This adjunct to dbe is also available as a separate program, dbhelp.

Performing a join

Refer back to the help window for the wfdisc table; this table describes external
files which contain recorded data from an instrument. The sta and chan fields spec-
ify a particular location and instrument. These fields, plus the time and endtime
fields, all taken together, comprise the primary key for the wfdisc table. This means
that for a particular station, channel and time range, there should be just one row in
the wfdisc table.

This relates to a very fundamental idea behind relational databases: a particular
piece of information resides in only one place. If it needs to be corrected, it need
only change in one place. Contrast this with a typical situation where a correction
may require updates in many locations; finding all the locations can be a major
problem.

The wfdisc table provides a reference to the data for a particular instrument at a spe-
cific time and location. Notice that a considerable amount of information is miss-
ing: where on the globe was this data recorded? That information is not contained
in the wfdisc table; instead it is kept in another table, the site table. Find the original
dbe database window, and press the button labeled site (or use the menu File-
>Open Table->site).

Test Drive

10 Datascope: A Tutorial

In this table, you can find the location at which a particular piece of data was
recorded: latitude, longitude, and elevation. If the original elevation was measured
incorrectly, it can be corrected here, in just one place. This is an important strength
of relational databases, but it is also a problem: the data about location is not kept
with the recorded data where it is most convenient during processing. Instead, when
you need the location, you must look it up in the site table.

Looking up information in the site table is simplified by a relational operation
called a join. This means creating a new composite table composed of columns
from other tables. In this particular case, we want to join wfdisc with site. Go back
to the wfdisc window, and under the view menu, select “join->site”. The wfdisc
window disappears, and a new window appears. This window contains a view into a
table which is the join of wfdisc with site.

What about the join conditions?

Conceptually, the join operation may be viewed as combining every row of the first
table with every row of the second table, but only keeping combinations which sat-
isfy some condition. For this particular join, the condition to be satisfied is: station
ids match, and the time range of the wfdisc row matches (overlaps) the time range
of the site row. In most RDBMS (Relational DataBase Management Systems), you
would need to specify this condition explicitly, but Datascope is able to infer and
provide the join condition in many cases. The chapter on Basic Datascope Opera-
tions describes how this is accomplished.

Datascope: A Tutorial 11

Arranging fields in a window

dbe chooses some order in which to display the fields of a view. This order may be
inconvenient. To obtain a more useful layout, select the View->Arrange menu.

Test Drive

12 Datascope: A Tutorial

The Arrange option brings up a dialog window in which you may select the col-
umns you wish to display, and the order in which they’ll appear. Press the none but-
ton, then select the fields you want, and finally press ok.

Viewing data in a record view
dbe normally presents data in a spreadsheet form, but sometimes it’s difficult to see
all the information on a single line. An alternative is to view the data one record at a
time. The record view shows all the fields in the order in which they appear in the
tables which make up the view. Click the right mouse button over the row which
you want to see in a record view to bring up a new window. You can adjust the
record either by clicking again on a different row, or by using the scrollbar on the
left. Bring up multiple windows with shift-right-mouse.

Datascope: A Tutorial 13

Other database operations

The join operation is probably the most difficult operation on a relational database.
Other operations are simple in comparison. You can sort a table, using a list of fields
or expressions. You can extract the subset of the records in a table which satisfy
some conditions. You can combine these operations, performing a subset, then a
join, then a sort, for example. We’ll try some of these operations now.

Select View->Sort in the menubar of the joined table. This brings up a dialog win-
dow like the arrange dialog. Select some keys (maybe, sta, chan, time) for sorting,
press done, and the table will be sorted, bringing up a new window. Notice the
unique option, similar to the unix sort -u option. When you want to sort by only a
single column, you can use the sort menu entry under the column as a short cut.

You can sort according to an expression as follows:

1. enter distance(43.25,76.949997,lat,lon)into the entry window.
2. select add expression under the staname column header.
3. a new column Expr should appear; select Expr->sort under this column.

These are the stations sorted by distance from Alma Ata:

Test Drive

14 Datascope: A Tutorial

You can use the left scrollbar to scroll to a particular record. However, this may be
inconvenient in a large table. As an alternative, try typing the station name (USP, for
example) into the entry window, then click on one of the arrows to the right of th e
entry window. This should move a matching record up to the top row of the display.
You can alternatively type control-return or control-backspace, or use the find for-
ward and find backwards menu options.

The simplest search just looks for a matching string in the entire record. However,
you can enter a Datascope expression like chan =~ /.*Z/, or just a regular expres-
sion. A search with an empty expression advances one page.

Creating a subset view

Subset views are created by specifying a Datascope expression; only records which
satisfy the expression are kept in the view. As a simple example, enter sta==”KBK”
into the entry window, and then select View->subset.

Datascope: A Tutorial 15

The original window disappears, and a new window with just the selected station
appears. By default, dbe eliminates the old window after operations like join, sort
and subset. This avoids cluttering the screen. However, you can keep the old win-
dow by selecting the Options->keep window menu.

For both searching and subsetting, you can look for records that satisfy more com-
plex criteria -- like time > “1992138 21:50” && chan == “BHZ”. The
syntax of Datascope expressions is similar to c and FORTRAN, and is covered in
detail in a later chapter.

Using dbunjoin to create a subset database

There are a number of editing operations you can perform, but not on this demo
database, which has been made read-only. Permissions are controlled strictly with
standard UNIX permissions, so you can probably override this. Instead, let’s create
a small local database that you can edit.

You already have a view of a subsetted join of wfdisc and site, and you have subset-
ted this table to contain only station KBK. Now join this table successively with
sensor, sitechan, and instrument. These tables make up the core tables of the data
side of the CSS database. The join you create references only rows which relate to
the station KBK. Select File->Save.. on the menu. Select to new database, and enter
mydemo as the name. Press the Save button.

Test Drive

16 Datascope: A Tutorial

A new database is created in your current directory named mydemo. It has copies
of each relevant row of the original database.

% ls

mydemo mydemo.sensor mydemo.sitechan

mydemo.instrument mydemo.site mydemo.wfdisc

Editing a database

You now have a copy of the database which you can edit. Open this database, either
by running dbe against it, or by using the “File->Open Database..” menu.

Bring up a window on the site table by pressing the site button. This window should
have just one record: there was just a single station in the view from which you cre-
ated this database.

Before you can edit this table, you must select Options->Allow edits under the
Options menu. After that, you can select a field by clicking in it, then edit that field
in the entry area. When you are satisfied, click on the ok, or click on another field to
edit. Scrolling will also save the edited value. For example, change the elevation
from 1.760 to 1.670.

You can change a whole column of values by entering an expression in the entry
area, and using the Set value menu option under the column header. For instance,
you could change all the dir fields in the wfdisc table from

Datascope: A Tutorial 17

wf/knetc/1992/138/210426 to plain wf by first bringing up the wfdisc window, then
typing wf in the entry area, and choosing the dir->Set value menu option. Alterna-
tively, you could get rid of the 138 directory in the path by putting patsub(dir,
“138/”, ““) in the entry area, and choosing dir->Set value.

Note that these changes only change the table. The waveform files are actually still
back in the original directory, and the wfdisc table is wrong. This operation (actu-
ally an unjoin, described later) does not adjust references to external files. You
could correct this with a symbolic link, or by editing dir to make it /opt/ante-
lope/data/db/demo/wf/knetc/1992/138/210426

Try creating a new affiliation table, using the File->Create New Table->affiliation
menu in the main dbe menubar. This brings up a dialog window into which you
may type values, and then use add to add new records.

You can also delete rows by selecting a few rows with the mouse, and then using
the Edit->Delete menu (this option will be disabled if you have not previously
selected Options->Allow edits). For reasons which will become clear later, it’s usu-
ally undesirable to physically remove the deleted records immediately. Instead,
each field of these deleted records is set to the corresponding null value; a later
crunch operation removes the null records.

Incidentally, multiple rows may be selected by dragging the mouse. Multiple selec-
tions are made by holding the shift key while clicking or dragging. However, mov-
ing or just clicking on the scrollbar clears all selections.

Simple graphing

dbe allows some simple graphing. Go back to the demo database, and bring up a
window on the origin table. Select Graphics->graph:

Test Drive

18 Datascope: A Tutorial

This brings up an empty graph. Enter lon and lat in the x and y entry areas,
either by typing or selecting from the menubutton label on the left of the entry area.
Then press the “plot” button. Press the menubutton labeled “origin”, and select
“site”. Use the button to the right of the Subset entry area which has a plot symbol
in it to select a different plot symbol, color, and/or size. Press the “plot” button
again. The result should look something like:

Datascope: A Tutorial 19

This graph shows all the origins (event locations or hypocenters) from the origin
table as small black diamonds, and all the station locations as slightly larger red
diamonds.

There are a variety of other ways to manipulate a graph; the best way to learn is to
play with this. You can select a region of the graph by clicking the left mouse button
twice to delineate the interesting region, which will then be magnified. You can do
this multiple times; then clicking the right mouse will back out to the full view.

You can select subsets of the table by typing an expression in the Subset entry area,
and you can change the scales to log scales. The plot can be saved as postscript,
yielding a higher resolution than the screendump above.

Summary

This short tour of the demo database has introduced the dbe interface, and shown
how to do simple joins, subsets, and sorts, as well as how to extract a small data-
base from a large database. By simply playing with the various menus and buttons,
you should now be able to form rather complex queries into the demo database.
However, you will probably find it helpful to read the later chapters to learn more

Test Drive

20 Datascope: A Tutorial

about expressions and various database operations. dbe is probably the most useful
single tool in the Datascope stable, but there are a variety of other tools for special-
ized use, and the primary value of Datascope comes in its use in programs.

Datascope: A Tutorial 21

CHAPTER 3 Schema and Data
Representation

Datascope keeps tables as plain ASCII files. Each line is a separate record, and the
fields occupy fixed positions within each line. (There is no variably sized text field.)
The name of a file which represents a table is composed of two parts -- the database
name and the table name, i.e. database.table. Typically, all the tables which make up
a database are kept in a single directory. However, there is also provision to keep
certain tables in a central location, but have multiple versions of other tables in
other locations.

Database Descriptor Files

Datascope understands a descriptor file which specifies a few important parameters:

• the database schema name
• a path along which various tables of the database may be found.

• the table locking mechanism

• central id server

The schema name is used to look up a schema file. This file is typically kept in
$(ANTELOPE)/data/schemas, but may instead be kept in the directory with the
database descriptor -- this provides a means of testing alternative or modified sche-
mas prior to installing them centrally.

Schema and Data Representation

22 Datascope: A Tutorial

The database path specifies a path along which to look for the files while hold the
database tables. For any particular table, the first file matching the table name found
along the path must contain the table.

The last two parameters are optional; they relate to table locking performed during
the addition (not deletion nor modification) of records. The default is no locking.
The other options are local filesystem locking or nfs filesystem locking. If you wish
to share a database across multiple machines, you must use nfs locking.

In you use nfs locking, you must also set up and run an idserver, which ensures that
each client gets unique integers for id fields in the database(s). This may be useful
even when you are not using nfs locking, if you want to avoid duplicate ids among
several databases.

Here’s an example of a descriptor file

#
schema css3.0
dblocks nfs
dbidserverxx.host.com
dbpath /opt/antelope/data/db/demo/{demo}

The example above is the current preferred format, but Datascope still supports an
earlier version which did not contain either dblocks or dbidserver. The order is
important for this descriptor file: schema on the first line, dbpath on the second:

css3.0
/opt/antelope/data/db/demo/{demo}

One can specify the idserver and the locking mechanism with environment vari-
ables (DBLOCKS and DBIDSERVER), but this requires all databases to use the
same locking and id server.

Representation of Fields

While the field values are represented in ASCII format in the disk files, Datascope
converts them to three different binary formats for use in programs: double preci-
sion floating point, integer, and string. The calculator recognizes a few other types -
- boolean, time and yearday -- and converts between them as necessary. (Time is

Datascope: A Tutorial 23

represented as a double precision floating point, and yearday is represented as an
integer.)

There is actually one additional field type which Datascope uses internally -- a data-
base pointer type. This type contains a reference to a single row or ranges of rows in
another table. This type is the basis for views and grouping of tables.

Schema Description File

The structure of the individual files and the database overall is dictated by a schema
file. This file describes the fields of the database, and specifies how these fields are
used in each table. Datascope’s schema file is unique in several respects:

• The schema file is a text file which is read and interpreted whenever a database
is opened. Changes in the schema file are reflected in the next execution of a
program which uses Datascope.

• A field with the same name has the same attributes (size, type, format) in every
table in which it appears. In other DBMSs (DataBase Management Systems),
the same name might apply to entirely different kinds of fields.

• There is considerably more information associated with every field and table
than in most DBMS’. This additional information serves to document a data-
base, and also allows Datascope to provide some more sophisticated operations
like joins and some automated verification tests.

A schema file contains three types of statements: Schema, Attribute, and Relation.

Schema Statement

The Schema statement appears only once, at the beginning -- it provides a short and
a long description of the schema overall. It is not required. The format of the state-
ment is:

Schema name
Description (“short description”)
Detail {

long description
}

Timedate time-stamp-field

Schema and Data Representation

24 Datascope: A Tutorial

 ;

You may also specify a field containing a time which is modified automatically
whenever a record is changed. For the CSS schema, this field is lddate.

Attribute Statement

The Attribute statement describes a single field of the database. It specifies the size
and type of each field, a a (C printf style) format code, a range of legal values, a null
value, the units (if applicable), and a short and a long description of the field.

Attribute name
type (length)
Format (“format”)
Range (“expression”)
Null (“null value”)
Units (“physical units”)
Description (“brief description”)
Detail {

Detailed description
}

 ;

Names should be alphanumeric, beginning with a letter. The legal types are Real,
Integer, String, Time, Yearday, and Dbptr. The length specification is the number of
characters to allow for the printed representation of the field. The Format code is a
(C) printf style format code that specifies how to translate from the internal, binary
representation (integer, double or string) to the printed format.

The Null value varies from field to field, but represents a field for which informa-
tion is not available. It is not the same as the SQL NULL. It is usually a value out-
side the Range.

The Range should be a boolean expression which is true for valid values of the
field.

The Units specification is not currently used anywhere, but should specify the phys-
ical units of the field in cases where this has some meaning.

Datascope: A Tutorial 25

The brief and detailed descriptions provide a convenient way of documenting the
schema, and are available for help screens.

Only the name, type, length, and format are required; however, filling in all the
clauses which make sense provides fairly extensive documentation.

Relation Statement

The Relation statement describes a table of the database. It has
the following format:

Relation name
Fields (field field ...)
Primary (key key ...)
Alternate (key)
Foreign (field field ...)
Defines field
Separator (“c” “c”)
Transient
Description (“brief description”)
Detail {

Detailed description
}

 ;

The Fields clause lists the fields which make up a record of the table.

Datascope allows specifying two keys for a database table, a primary and an alter-
nate key. The alternate key is often a single id field. A key should identify a unique
record in the table; it is a mistake if one key matches more than one record in the
table. Datascope does not prevent this situation, but dbverify will flag the problem.

A table may have fields which are basically indexes into other tables. Such fields
may be identified with the Foreign clause. Foreign keys must be single fields, not a
compound key.

Schema and Data Representation

26 Datascope: A Tutorial

Usually, a foreign key is an id field -- a small integer which identifies a row in a
table, but has no intrinsic meaning. Some examples from the CSS database are wfid,
arid and inid. These integers may be assigned in any arbitrary fashion, provided
they are all unique. Datascope has provision for automatically generating these ids
(see dbnextid(3)), but they must be identified in the schema by the Defines clause.

By default, Datascope separates the fields in a database record with spaces, and
separate records with a linefeed. This is convenient for editing with a text editor
(although tab would be a more convenient field separator for processing by awk).
These defaults may be overridden by specifying field and record separators; speci-
fying null strings will eliminate the separators altogether.

The Description and Detail clauses serve the same function as in the Schema and
Attribute statements, providing brief and more detailed explanations of the field.

The Transient clause is described below; it is not typically used in a schema file.

Datascope Views

The schema file is usually kept in a central location, read and compiled whenever a
database is opened. It should specify all the central tables of the database. However,
it is possible to create additional tables on the fly. Such tables are Transient, have no
direct identification in the schema file, and usually are not represented on disk
directly.

The most common and useful variety of such tables are simple views. Simple views
should be regarded (and are implemented) as arrays of database pointers. Each
database pointer in a simple view identifies a single record of a base table. One
dimensional arrays (vectors) are useful as sorted lists and subsets of the records of a
single table. Two dimensional arrays represent joins of several tables; such joins
may also be sorted or represent subsets of the complete join. For instance, a view of
the site table (sorted and/or subsetted) could be described in the schema as

Relation site_view
Fields (site)
Primary (sta ondate::offdate)
Transient
Description (“Example of simple vector view”)
Detail {

Datascope: A Tutorial 27

 You create a table like this when you
 sort or subset the site table in dbe.
 }
;

A simple joined view might represent a join of the wfdisc, sensor, site, sitechan, and
instrument tables:

Relation data_view
 Fields (wfdisc sensor site sitechan instrument)
 Transient
 Description (“Example of a simple joined view”)
 Detail {

You can create a table like this in dbe
by joining wfdisc to sensor, the result to
site, that result to sitechan, and finally
joining that result to instrument.
}

While a simple view consists only of database pointers, more complex views which
mix database pointers and other types of fields are also possible.

An example of a complex view is a grouped view. This view will have a set of fields
which are represented directly in the table, and a special database pointer which
refers to a range of rows in another table. This other table may be a base table, but is
more often itself a simple, sorted view. The database pointer which refers to a range
is always named bundle; there is currently no provision for keeping more than one
such pointer in any table.

Reserved Names for Fields and Tables

The names of certain fields and tables bear a special meaning to Datascope. This is
probably a mistake, but the cost to specify these fields into the schema rather than
building them directly into Datascope was judged to be higher than the added value.

The particular choice of names usually relates to the origin of Datascope in support-
ing the CSS schema. A few names support misfeatures of the CSS schema, and

Schema and Data Representation

28 Datascope: A Tutorial

should just be avoided in new schemas; commid and lineno from the remark table,
and ondate and offdate in the site and sitechan tables are examples.

Other names are arbitrary choices which serve to implement necessary features. A
redesign might choose different names, but the functionality would be essentially
the same; dir, dfile, lastid, keyname and keyvalue are examples.

The CSS database provides a separate remark table for adding comments; many
tables then refer to a set of records in the remark table with the commid field. Each
record in the remark table allows 80 bytes for a comment; however, longer com-
ments can be entered by using multiple records with the same commid and different
lineno. In a few places, Datascope accomodates this scheme explicitly. Routines are
provided to add or extract comments. See dbremark(3) and dbremark(1).

The site and sitechan tables specify ondate and offdate, so-called “julian” days, for
the time range, rather than just time and endtime (epoch times). This makes it
impossible to specify changes in instrument orientation during a single day, and
complicates the join between other tables like wfdisc and sensor, which specify a
time range in epoch time. The different names must be recognized, and conversions
must be done from yearday format to epoch time format. To deal with this, Datas-
cope explicitly recognizes ondate and offdate, and explicitly handles cases where
tables with time are joined to tables with ondate and offdate. The further special
case of a null offdate indicating the indefinite future is handled explicitly. However,
you would be wise to avoid using ondate and offdate in any new tables or schemas.

Dir and dfile specify a pathname to a file outside the tables. Such files could be
regarded as another field of a table, but a field which the database is not capable of
manipulating directly. In the CSS schema, dir and dfile are used to refer to recorded
data, and to instrument response descriptions.

Waveform data is kept out of the database because of its volume. The parameter
data in the database is a very small fraction of the size of the collected data. It’s
quite useful to have this parameter data online continuously and quite impossible
(for most users at least) to keep the collected data online all the time.

The instrument response information is an example of information which is not best
represented in a relational database form. While it would be possible to keep this
information directly in the database, doing so would confer no additional advan-
tages, and would have some direct costs in speed and convenience.

Datascope: A Tutorial 29

In order to assign unique values to id fields when new records are added, Datascope
uses the lastid table. Keyname is the name of id, while keyvalue is the last assigned
integer for that id. Datascope increments the latter when a new record is added to
the table which defines the id. Other schemes might be devised to handle this prob-
lem, but this is adequate.

A word of caution regarding id fields

Because id fields present a fast and simple key to a table, there is a tendency to
make lots of them, provide an id key for every table, and do the joins on these ids.
This is usually a mistake. If possible, avoid ids and make your keys the combination
of meaningful fields which uniquely specify a record in a table.

While ids are simple and seductively attractive, they introduce some of the knottiest
problems in database management, whether you are using Datascope or any other
relational database management system. Because they have no meaning outside the
database context, if they are ever modified inappropriately, it may be difficult or
impossible to recover. Id fields also complicate operations like merging or compar-
ing two databases, sometimes to the point of making the operation impossible. Ids
are especially bad in tables where the real key is a time range of some sort; wfdisc
and sitechan are good examples in the CSS database. In either of these tables, any
particular record could be split into two records covering adjacent time ranges.
(This might be done to reflect actual changes in station parameters, or in the case of
wfdisc, just to segment the recorded data differently.) Doing so would not affect the
database integrity if all joins were made on the true keys of these tables. However,
joins which use the ids in these tables (wfid and chanid) would no longer be correct,
and fixing up the problem could be difficult.

Finally, bundle and bundletype are newly introduced fields which support grouping.
Bundle is the name given to a database pointer in a complex view which refers to a
range of rows in some other table. Bundletype is an integer which may be used to
specify the level of the grouping -- that is, a table grouped by certain fields might be
further grouped by a subset of those fields.

Schema and Data Representation

30 Datascope: A Tutorial

Datascope: A Tutorial 31

CHAPTER 4 Basic Datascope
Operations

Datascope provides all the standard operations which any RDBMS must, albeit in a
somewhat different fashion than the standard SQL approach. In addition to the sim-
plest operations of reading, writing, adding and deleting records, it’s possible to
subset, sort, group, and join tables. You probably have an intuitive understanding of
the subset, sort, and group operations, and the underlying code is conceptually sim-
ple. Joins are a bit more complex, and this chapter concentrates on explaining how
Datascope handles joins.

Reading and Writing Fields and Records

Datascope, of course, provides ways of doing this, translating from the ASCII rep-
resentation of the files to a binary representation more convenient for programming.
Files which represent tables are mapped into memory and accessed as large arrays.
This means that the tables do not use up swap space, and it tends to be faster than
going through the i/o interface.

Deleting Records

Unlike most RDBMS, specific record numbers are used when reading or writing
records: e.g., record #10. These record numbers are directly manipulated by the
user. Because of this, deleting records can cause problems; deleting a record

Basic Datascope Operations

32 Datascope: A Tutorial

changes the record number of all subsequent records. This is often inconvenient,
and consequently records may instead be marked for later deletion. Marking a
record sets all of the fields to null values; a later crunch operation deletes all records
which are null.

Subsets

The subset operation is pretty intuitive -- find all records which satisfy some condi-
tion, a boolean expression. This corresponds to the Where clause in SQL. However,
Datascope expressions are more flexible than most SQL implementations.

Sorts

The sort operation simply orders the records according to some set of sort keys.

Grouping

A sorted table may be grouped -- this just means that consecutive records which are
identical in some set of fields are separated into bins, and a few additional opera-
tions can be performed on these bins.

Joining Tables

The principal drawback of keeping data in a relational database is that you must
regularly join tables in order to extract information from the database. In the demo
database, given data recorded at station AAK and referenced in the wfdisc table,
you must look into the site table to find out the location of AAK, and into sitechan
to find out the orientation of the sensors, and into sensor and instrument to find out
the response of the instrument. The most convenient way to do this is to construct a
join of wfdisc, sensor, instrument, site and sitechan.

Conceptually, you can imagine forming a join of two (or more) tables as follows:

1. Find all combinations of a row from each table.
2. Keep only the combinations which satisfy some condition.

This approach would involve calculating the expression m1 * m2 * ... * mn times.
For complex expressions, the join must in fact be performed in this fashion. Datas-

Datascope: A Tutorial 33

cope’s theta join is performed in exactly this manner. However, this can be slow and
expensive (try it), and it’s often possible to use indexes to work much faster.

Natural joins among the tables of a database are those where the join condition is
that fields with the same name have the same value. For instance, when joining
wfdisc with site, the sta field should be the same in both the wfdisc row and the site
row:

wfdisc.sta == site.sta

Forming the joined table which satisfies this condition can be done in a more effi-
cient fashion than by considering every possible combination of rows from wfdisc
and site. Instead, first sort site by sta, then proceed linearly through the wfdisc
table. For each row of wfdisc, find the rows in site which have the same sta by
searching the sorted list. Instead of m1 * m2 calculations, there are now more like
m1 * log(m2) calculations -- much quicker (you may need to consider the time to
compute the sorted list, of course). Datascope performs natural joins in exactly this
fashion.

In addition, of course, the time ranges in wfdisc and site should match. In Datas-
cope, this is taken to mean that the time ranges overlap. (In practice, this often
means that one time range falls completely within the other; it is sometimes a data-
base inconsistency if this is not true.)

Datascope provides a method of indexing time ranges. This is more difficult than it
may at first appear. Consider a number of overlapping time ranges -- how should
they be sorted? There is no unique ordering for overlapping time ranges. They
might be sorted by starting time, by ending time, by the midpoint, etcetera. Some
choice must be made, and Datascope chooses the one you probably thought of first;
it sorts by starting time. However, if a time range index consisted of just starting
times, on average the join expression would need to be computed on half of the
indexed table for each record of the first table. To avoid this, Datascope first sorts
by starting time, then computes a monotonically increasing envelope function of
end times. The start times and this envelope function have the same sort order, so
that the set of candidate matches is considerably restricted. Nonetheless, range
indexes are more costly to compute and to join with than indexes on simple or com-
pound keys.

Basic Datascope Operations

34 Datascope: A Tutorial

Inferring Join Keys

If you don’t specify the keys by which to join tables, an attempt is made to infer the
keys based on the primary, alternate, and foreign keys specified for the two tables.
The process is based on matching names for the keys of the two tables. It proceeds
as follows:

1. If any foreign key in the first table is a part of the primary or alternate key in the
second table, use it as the join key.

2. If any foreign key in the second table is a part of the primary or alternate key in
the first table, use it as the join key.

3. Compare the primary keys of the two tables; if any fields match, use those as the
join keys.

4. Compare the alternate keys of the two tables; if any fields match, use those as
the join keys.

5. Compare the primary keys of the first table to the alternate keys of the second
table; if any fields match, use those as the join keys.

6. Compare the primary keys of the second table to the alternate keys of the first
table; if any fields match, use those as the join keys.

The process is complicated somewhat by the presence of ranges, for example a time
range. A range matches another range with the same start and end names. (As a spe-
cial concession to the CSS 3.0 database, time::endtime will also match ondate::off-
date. The original decision to have the fields ondate and offdate was flawed.) A
range will also match a single field which has the same name as the start of the
range. For instance, time will match time::endtime.

Tables which are the result of joins inherit a subset of the keys possessed by their
parents. This process is strictly ad hoc, and is not guaranteed to produce the correct
subsequent joins. However, it is very often correct, and by careful choice of the
order in which you join tables, you can usually force the correct join.

Inheritance of keys

The inheritance of keys in joined tables is based strictly on the names of the keys.
The primary key for the joined table is the set of unique names from the primary
keys of the two parent tables. The alternate and foreign keys are similarly consti-
tuted.

Datascope: A Tutorial 35

Once again, the presence of ranges complicates matters. If the parent tables had
time and time::endtime as part of their primary key, the joined table will have both
time and time::endtime as part of its primary key. However, because both time’s are
unqualified, the time from the first table in the join will be used in later joins. This
will probably not be the right choice.

Specifying Join Keys

To be absolutely certain you have the correct join keys, or to override the inferred
join, you may specify join keys. Join keys are specified as two lists of fields or
ranges; one list for each table. Often these two lists are identical. Ranges are indi-
cated by the double colon separating the lower and upper boundary of the range.
Note that the keys need not be just simple field names; they may also be expres-
sions.

Speed and efficiency

Datascope always performs the joins two tables at a time, in the order you specify.
An index is always used for the second table, while the first table is stepped through
linearly. This can be useful for verifying that every record in the first table joins
with one or more records in the second table, or identifying the records which don’t
join. (Finding the records which join with multiple records in the second table is
more difficult).

However, your usual concern is what’s fastest? A commercial DBMS will probably
attempt to figure this out for you, and compute the join in the most efficient fashion.
In Datascope, you must figure it out on your own. If it’s really important, time the
command line utilities. But as a rule of thumb, joins will be fastest if the second
table has more rows and has the necessary index precomputed. If an index must be
computed to perform the join, then it’s faster (usually) if the second table has fewer
rows.

An operation which is complementary to a join is to find all the records which do
not join with a second table. Such records often indicate a database problem of
some sort. The join operation (from the C interface) returns a list of these records,
and the dbnojoin command and tcl and perl operation provide a view containing
these records.

Once you have a joined view, you may want to take it apart. Datascope provides a
few operations which do this. dbsever removes one table from a view, keeping only

Basic Datascope Operations

36 Datascope: A Tutorial

rows which are unique in the output view. A related operation is dbseparate, which
forms a view of all the records from a particular table which participate in the input
view. A view may also be taken apart with dbunjoin, which creates new tables con-
taining only the records which participate in a view. A corresponding operation is
to return a list of all the records participating in the view for each table in the view.

A view is a somewhat static snapshot into a database It is a set of references to spe-
cific records in the database. Changes in the fields of existing rows of the database
will be reflected in the view, if you get the value of a field. However, the view will
not change as new records are added, nor because changing fields would result in a
different view if the view were recomputed. A program which needs a more
dynamic window into the database must either recompute the view frequently, or
may find the dbmatches operation to be useful. dbmatches finds the collection of
records in a table which would satisfy a certain join condition; it does not create a
new joined view, it just returns the list of records. The user must index through
those records; this is more lightweight and more convenient in many situations.

Summary
Datascope database operations are the guts of the database system; it’s largely these
operations which provide the power of the database. However, like arithmetic, there
are not that many operations to learn: subset, sort, join, group and a few other
closely related operations. All these operations are probably familiar from set the-
ory in junior high school, or in recent years, first grade.

Datascope: A Tutorial 37

CHAPTER 5 Expression Calculator

Datascope has a very useful expression calculator. Expressions are used in many
ways:

• to create a subset of a table
• as a sort key or a join key
• to calculate a value which doesn’t appear directly in a table
• in the schema, to specify the legal range of a field.

Expressions have a familiar algebraic format, and are quite similar to expressions in
c, FORTRAN and awk. You may find it instructive to play with expressions as you
read this section, using the program dbcalc. dbcalc simply reads expressions from
standard input, and evaluates them, printing the result. You need to give it a data-
base table to use. Try

% dbcalc demo.wfdisc

And you can follow along, typing in the expressions below.

Expression Calculator

38 Datascope: A Tutorial

Basic Operators and Database Fields

Of course, the calculator understands the basic operators: ’+’, ’-’, ’*’ and ’/’. Data-
base fields are treated like named variables, and may be intermixed with literals.
For example:

time

5/21/1987 5:04:37.000

(nsamp-1)/samprate + time

5/21/1987 5:05:28.996

endtime

5/21/1987 5:05:28.996

The specific results depend on the particular record selected, of course. For clarity,
the precision of the printed values has been limited; floating point numbers are all
internally double precision.

In addition to the familiar operators, the calculator understands ’%’ for modulus
and ’^’ for exponentiation, and a few bitwise operators are understood:

10^5

100000

1.3^2.1

1.73

15 % 4

3

25.3 % .25

0.05

1 << 5

32

28 >> 3

3

25 & 3

1

10 | 3

11

Datascope: A Tutorial 39

Data Types

The calculator understands a few basic data types, and converts between them as
necessary. Thus a string may be converted to an integer, or an integer to a floating
point number, or a number to a string, depending on the context:

10 + ’13’

23

10 + ’13.5’

23

10.0 + ’13.5’

23.5

10 + 13.5

23.5

Each field in a database table has a specified type; the type of input literals is dic-
tated by their format. A number without a decimal point is an integer, a number
with a decimal point is floating point. Strings are enclosed in single or double
quotes. The result of 10 + ’13.5’ may have surprised you; because the first
operand was an integer, the string was converted to an integer, not a floating point.

Some conversions can be done explicitly:

ceil(-3.5)

-3

floor(-3.5)

-4

int(-3.5)

-3

String Operations

Strings have a few special operations; “.” is the concatenation operator:

“a” . ’b’

“ab”

sta . ’:’ . chan

“KKL:HBIE”

Expression Calculator

40 Datascope: A Tutorial

dir . ’/’ . dfile

“sac/1987141050437.00.KKL.HBIE”

The extfile function returns the path to an external file specified by the special fields
dir and dfile in the record.

extfile()

 “ex/sac/1987141050437.00.KKL.HBIE”

extfile(“wfdisc”)

“ex/sac/1987141050437.00.KKL.HBIE”

Notice that this is not necessarily the same as the concatenation of dir, ’/’, and dfile.
If the path is not an absolute path, it is relative to the location of the file which con-
tains the table.

The optional argument to the extfile function is the name of a table. In some cases,
a joined view may contain multiple dir and dfile fields. (Consider a join of wfdisc,
sensor and instrument, for example.) In this case, specifying a particular base table
(instrument, for example) ensures that you get the external file specified in that
table.

Pattern matching and pattern substitution are available:

chan

“HBIE”

chan =~ /.*E/

true

chan =~ /.*Z/

false

chan =~ /E/

false

sta =~ /AAK|CHM|KKL/

true

time

5/21/1987 5:04:37.000

time =~ /.* 5:0.:.*/

true

patsub (chan, “HB”, “BH”)

Datascope: A Tutorial 41

“BHIE”

patsub (sta . “/” . chan, ’([A-Z]+)/([A-Z]+)’, ’$2/$1’)

“HBIE/KKL”

The pattern matching expression is a standard UNIX regular expression. Read the
sed man page for a complete description. The pattern must match the entire string
on the left, not simply be a part of it. However, strings from fields are stripped of
leading and trailing blanks before being used in calculations.

The pattern substitution pattern (second parameter of the patsub function) need
only match part of the string (first parameter). As with sed and perl, matching sub-
expressions (delimited by parentheses as shown above) can be referenced in the
replacement string as $1 through $9.

Logical Operators

There are the typical (C form of) logical operators:

chan == ’HBIE’

true

chan > ’HB’

true

calib != NULL

true

commid == NULL

true

In simple expressions with a field on the left, followed by the operator ’==’ or ’!=’,
NULL is understood as the null value for that field.

When a time field is compared to a string literal, the string may specify time in a
variety of recognizable formats. Most common formats will be recognized prop-
erly. (See the man pages epoch(3) or epoch(1) for more examples).

time

5/21/1987 5:04:37.000

time > “5:04:35 May 21 1987"

true

Expression Calculator

42 Datascope: A Tutorial

time > “5/21/87" && time < “5/22/87"

true

time < “5/21/87” || time > “5/22/87”

 false

time > “5:04 pm 5/21/87"

false

time > “1987141"

true

time > “1987 (141)”

true

Another operator borrowed from c is the ’?’, which evaluates an expression and
returns one value if the expression is true and a second value if the expression is
false:

calib

 1.2

calib ? calib : 1.0

 1.2

chan

 “HBIE”

chan == “HBIZ” ? “vertical” : “horizontal”

 “horizontal”

While this syntax can be confusing, it takes the part of if .. else in the calculator.
You can read

e1 ? e2 : e3

as

if (e1)

 e2

else

 e3

Datascope: A Tutorial 43

Assignments

Sometimes expressions can change the value of a field. The assignment operator is
:= to make it difficult to mistakenly make an assignment. NULL is also understood
as the null value for the field in this context.

commid := NULL

-1

endtime := time + (nsamp-1)/samprate

5/21/1987 5:05:28.996

As in C, the value of an assignment is the value assigned. Operators may be mixed
in arbitrarily complex expressions. The precedence of operators is the same as C,
and parentheses may be used to make the order of evaluation explicit.

Standard Math Functions

There are a number of math functions. The usual trigonometric functions:

sin(30)

0.5

cos(45)

0.707

tan(90)

-2.61e+15

tan(0)

0

tan(45)

1

atan(sqrt(1-.5^2), .5)

60

For convenience with the CSS database, arguments and results are in degrees,
rather than radians.

There are also the familiar natural and common logarithms, square root, absolute
value and min and max. Sign returns one, zero, or negative one, depending on the
sign of the operand.

Expression Calculator

44 Datascope: A Tutorial

log(10)

2.3

log10(10)

1

exp(log(19.5))

19.5

sqrt(2)/2.0

0.707

abs(-5.3)

5.3

min(-5, -3)

-5

max(12, 30)

30

sign(-5.3)

-1

sign(0)

0

sign(1.5e-30)

1

Time Conversion

There are a variety of functions to convert among several common time formats.
epoch converts a year/day of year integer (for example, day 35 of year 1973 is
1973035) -- sometimes termed a julian day-- to an epoch time: seconds since Janu-
ary 1, 1970. yearday takes an epoch time and converts back to the yearday format.
strdate and strtime provide a standard conversion from epoch time to the more eas-
ily understood date and time format. date2e takes a year, month, day, and seconds
of that day, and converts to an epoch time. The str2epoch function converts a string
to an epoch time. now returns the current epoch time (as reported by the local sys-
tem).

epoch (1987244)

9/01/1987 0:00:00.000

yearday (“9/1/87")

Datascope: A Tutorial 45

1987141

strdate (time)

“ 5/21/1987"

strtime (time)

“ 5/21/1987 5:04:37.000"

date2e (1987, 5, 12, 2*3600+34*60+5.35)

5/12/1987 2:34:05.350

str2epoch(“Jan 25, 1993 11:23:5.4")

1/25/1993 11:23:05.400

now ()

10/15/1994 23:04:46.000

Spherical Geometry

There are several functions related to distances around a spherical earth. Distances
are expressed in angular degrees; azimuth is measured clockwise from geocentric
north.

distance gives the angular distance between two points, while azimuth computes
the direction from one point to the second. latitude and longitude compute the
inverse operation -- the resulting latitude and longitude when moving a certain
number of degrees in a particular direction.

distance(origin.lat, origin.lon, site.lat, site.lon)

 13.7234

azimuth(origin.lat, origin.lon, site.lat, site.lon)

 306.345

latitude(origin.lat, origin.lon, 13.7234, 306.345)

 56.4001

longitude(origin.lat, origin.lon, 13.7234, 306.345)

 58.6001

site.lat

 56.4

site.lon

 58.6

Expression Calculator

46 Datascope: A Tutorial

(The computed site.lat differs from the actual site.lat because of roundoff error in
the distance and azimuth).

Seismic Travel Times

A seismic travel time calculator is built in. ptime and stime calculate the travel time
for the first p and s arrival. (The arguments are distance in degrees, followed by
depth in kilometers; for phase_arrival, the argument is velocity in degrees/second).

ptime(5.105, 155.166)

74.8333

stime(5.105, 155.166)

133.79

ptime(5.105, 155.166)+origin.time

4/27/1992 10:52:55.502

stime(5.105, 155.166)+origin.time

4/27/1992 10:53:54.459

parrival()

4/27/1992 10:52:55.502

arrival(“Pn”)

4/27/1992 10:52:55.502

sarrival()

4/27/1992 10:53:54.460

arrival(“Sn”)

4/27/1992 10:53:54.460

arrival(“PcP”)

4/27/1992 10:59:52.549

phase_arrival(.6)

4/27/1992 10:51:49.177

ptime and stime may always be evaluated. However, parrival, sarrival, and
phase_arrival require a join of origin and site, because they use fields from both
tables. parrival is shorthand for:

origin.time+ptime(distance(origin.lat,orgin.lon,site.lat,
site.lon), origin.depth)

Datascope: A Tutorial 47

and sarrival is shorthand for:

origin.time+stime(distance(origin.lat,origin.lon,site.lat,
site.lon), origin.depth)

and arrival is shorthand for:

origin.time+phasetime(phase,distance(origin.lat,origin.lon,
site.lat, site.lon), origin.depth)

phase_arrival(velocity) is shorthand for:

origin.time + distance(origin.lat, origin.lon, site.lat,
site.lon)/velocity

Note that the specified velocity is in degrees/second, not kilometers per second as
you might have expected.

Seismic and Geographic Region functions

The Flinn-Engdahl seismic and geographic region functions are built-in. grn and
srn take two arguments -- latitude and longitude in degrees -- and return the corre-
sponding geographic or seismic region number, respectively. gregion and sregion
take the same arguments, but return the names of these regions.

sta

“HIA”

lat

49.2667

lon

119.742

grn(lat,lon)

657

gregion(lat,lon)

“E. USSR-N.E. CHINA BORDER REG.”

srn(lat,lon)

41

sregion(lat,lon)

“EASTERN ASIA”

Expression Calculator

48 Datascope: A Tutorial

Conglomerate functions

A few functions operate on an entire table or a group.

max(lat)

43.2669

min(lat)

42.0778

count()

20

sum(lat)/count()

42.6158

min and max (with a single argument) find the minimum or maximum value of the
expression over the entire range of the table or group. count returns the number of
records, and sum computes the sum of an expression, calculated over all the rows of
a table or group.

Whether to compute over an entire table or over a group is decided based on the
presence of the field bundle, which is normally present only in a grouped view. For
these grouped views, the computation is done over just a range of records, in the
subsidiary table. You can force the calculation to range over the entire table instead
by using min_table, max_table, count_table, or sum_table.

External functions

It’s possible to execute a shell command and return a value. The syntax for this is
borrowed from tcl/tk:

[“date”]

 “Sat Oct 15 20:29:21 MDT 1994"

[“wc” “-c” extfile()]

“ 88368 /jspc/wf/prod-
ucts/casia_waveforms_may92/wf/knetc/1992/138/210426/19921
382148.07.CHM.BHZ”

Note that the string literal arguments must be quoted; the list of expressions which
make up the command line are evaluated just like any other expression.

Datascope: A Tutorial 49

CHAPTER 6 Programming with
Datascope

While a great deal can be accomplished with just dbe, ultimately you will probably
need to write specialized scripts and programs. You might want to generate reports
offline, for instance. In addition, there are many kinds of problems which can’t be
solved by just manipulating sets. Finally, Datascope doesn’t address the issue of
external files (in seismology, the actual waveform data) beyond providing a way of
indexing them.

You can attack programming problems from a variety of levels with Datascope.
Some problems, (like generating a report) can easily be solved with Datascope’s
command line utilities. These provide the basic operations (subsets, joins, and
sorts) at the command line. If you can get a table display from dbe which is what
you want, then you can also write a shell script to generate the same information.

When the problem is almost solved by the command line utilities, you can often use
standard shell tools like awk, sed or perl to finish the job.

Problems involving conversions to or from another RDBMS might be handled most
easily with the perl interface, because perl is quite good at text manipulation, and
also has interfaces to many of the standard RDBMS.

The command line utilities are also convenient for generating the input data set for
more complex analysis. Rather than build a selection process into a program, use
the command line utilities to select an interesting subset of data from the database,

Programming with Datascope

50 Datascope: A Tutorial

read the resulting view directly in the program, and concentrate in the program on
solving the problem. This approach is likely to lead to more general purpose pro-
grams.

Especially when a GUI interface is desired, consider tcl/tk. Antelope provides tcl/tk
extensions which provide direct access to most of the functionality of Datascope
and many other Antelope functions. The tcl interface is probably the easiest to
learn, after the command line interface. Because tcl may be run interactively, you
can (and should) develop an interactive development style: type in a few commands
at a time inside atcl or awish, before saving them into a script file. The process of
creating an application under X Windows is dramatically simpler with tk than with
c. dbe is itself a tcl/tk script, as are several other Antelope programs.

There is also a complete perl interface into Datascope and many other Antelope
functions. Perl is a jack-of-all-trades language, particularly prized by system
administrators. It’s fast, easy to write, and widely available. Many people prefer it
to tcl/tk and c.

The Datascope library is written in common c, with a few yacc and lex parsers.
Consequently, the interface has a distinctly c flavor, and the c interface is the best
supported and tested. For problems which cannot be solved by simpler means, the c
interface is preferred.

In some primarily numerical applications, (or because of familiarity with the lan-
guage), FORTRAN may be the preferred language. FORTRAN’s limitations with
respect to dynamic memory allocation and string manipulation make it difficult to
support all of the Datascope functionality. However, most of the c interface to Data-
scope has a FORTRAN counterpart of the same name, sometimes with slightly dif-
ferent parameters.

If you have a numerically complex problem, or you want extensive graphics sup-
port, and have access to it, you may consider Matlab. Kent Lindquist has a contrib-
uted matlab package which provides access to many Antelope functions including
Datascope.

Sample Problem

At this point, you should already be familiar with Datascope from exploration with
dbe. This chapter introduces the programming interface by considering a simple

Datascope: A Tutorial 51

example problem. It will not go into detail about the usage of any particular Datas-
cope call; for the complete story, please look up the man page.

The problem to be solved is to find all the arrivals associated with an event, ordered
by arrival time, and for each arrival, to show the station, arrival time, phase, and dis-
tance to the event. This is easily done from within dbe in the demo database:

1. bring up the origin table.
2. select one origin, by entering its origin id (orid) in the entry area and selecting

subset from the menu under the orid column header. (Use orid 645)
3. join this subset to the assoc table, then to the arrival table, and finally to the site

table.
4. sort by arrival.time.
5. Use the arrange dialog to show sta, arrival.time, .delta, phase.

You should get a display like the following:

This problem is very simple, but serves to introduce various approaches to the prob-
lem. (As an exercise, and to get a better appreciation of what you gain by using
Datascope, you might try solving this problem working directly against the text
files using c, FORTRAN, and/or perl. Or create the SQL to generate this report
from a standard RDBMS).

The examples of implementations in shell, tcl, perl, c and fortran in the remainder
of this chapter are also available in the examples section of the Antelope distribu-
tion in the directory $ANTELOPE/example/datascope.

Programming with Datascope

52 Datascope: A Tutorial

At the command line

The command line utilities provide the basic join, sort, and subset functions of dbe
as commands that can be joined together into pipes. The commands are named after
their function, and have the same names as their corresponding library routines:
dbjoin, dbsort, and dbsubset. The output of dbjoin, dbsort, and dbsubset is binary;
don’t try to display it on your terminal or window. dbselect reads this binary output,
and displays selected fields (or expressions).

The output of dbjoin, dbsort, and dbsubset is a simple view -- an array of database
pointers with a little bit of header information. This output can be saved to disk and
read later. Following the table naming conventions, or by using the -n option,
allows a saved view to be read like another table of the database. However, because
views contain references to specific record numbers in the base tables, they can be
invalidated by changes to original tables. Datascope detects changes by checking
modification dates, and will not open out of date views.

Converting the process outlined in dbe above to the command line is straightfor-
ward:

1. Begin with the origin table, and select only orid 645:
dbsubset demo.origin “orid == 645" | \

2. Join this result with the assoc, arrival, and site tables, by piping the results to
dbjoin:
dbjoin - assoc arrival site | \

3. Sort by arrival.time:
dbsort - arrival.time | \

4. Print out the fields of interest:
dbselect - sta arrival.time assoc.delta assoc.phase

Here’s the result:

AAK 706139746.35000 1.928 P

KBK 706139751.35000 2.230 P

CHM 706139752.34740 2.289 P

USP 706139752.40005 2.325 P

TKM 706139755.45010 2.566 P

AAK 706139775.33963 1.928 S

KBK 706139784.43397 2.230 S

Datascope: A Tutorial 53

CHM 706139787.28949 2.289 S

USP 706139788.12868 2.325 S

dbselect does not print epoch times in an easily understandable format; for some-
thing easier, specify strtime(arrival.time) instead of arrival.time. (To
get raw epoch times in dbe, deselect the “Option->Readable times”).

The command line utilities are by far the easiest and most concise of the program-
ming interfaces, though they are somewhat limited. Generally, they provide the
same kinds of manipulation as dbe. In two areas, however, the command line utili-
ties are (currently) more flexible:

• dbjoin allows you to explicitly specify the join keys between two tables. This
makes it possible to join the event and the origin tables on the condition that
event.prefor == origin.orid, for example.

• dbselect allows tables to be grouped by some set of fields, and allows printing a
header and footer around each such group.

Database pointers

Before going on to the tcl, c, and FORTRAN interfaces, it is useful to introduce a
few concepts and utilities which are used in all three interfaces.

First, most Datascope library calls use a construct called a database pointer. In c,
this is declared as a struct, Dbptr. In FORTRAN, it is an array of four integers, and
in tcl, it is a list of four integers. A database pointer is used to address a range of
database parts, from a specific field in a record in a table, to a whole record, to a
whole table, to a whole database. The integers which make up a database pointer
index structures internal to Datascope. However, these various integers may be
manipulated directly by the user. The various integers are

• database #
The database number is just the index corresponding to the order in which data-
bases were opened. A typical application may only open one database, in which
case database number would be zero.

• table #
Table number is just the sequence number of the table in the schema file; as
views are created, they receive higher numbers.

Programming with Datascope

54 Datascope: A Tutorial

• field #
Field number is the sequence number of the field in the table.

• record #
Record number is the sequence number of the record in the table.

Note that all these numbers follow the c convention of being zero based, starting at
zero, rather than the FORTRAN convention of starting at one.

Typically, the user will directly manipulate only the record number and use
dblookup to find table and field numbers. The various numbers are dynamic; except
possibly for record number, they will not vary during a particular execution of the
program, but they may very well change from one execution to the next (if the
schema file changes, for instance). That is, the database pointer for a particular field
in a particular record of a particular database may be different the next time the pro-
gram is run.

These indexes may also take on a few special values. dbALL, dbSCRATCH,
dbNULL, or dbINVALID. When the field number is dbALL, the database pointer
refers to the entire record. Similarly, when the record number is dbALL, the data-
base pointer refers to the entire table. (However, it is not valid to have field number
refer to a field and record number be dbALL).

The record number may be dbSCRATCH or dbNULL, in which case the database
pointer refers to two special records for a table; the “scratch” record, and the null
record. You may assemble a new record in the scratch record before adding it to the
table, and you may read null values for fields or records from the null record.

One last special case must be mentioned; a database pointer which specifies a con-
tiguous range of records from a table. In this case, the field index does not refer to a
field, but rather is the number of the last record of the range, plus one. A field
named bundle contains a database pointer which refers to a range of records.

A few programming utilities

Programming in tcl, c, or FORTRAN with Datascope requires becoming familiar
with a small set of utility functions, in addition to the Datascope library routines.
These utility functions relate to:

• error handling

Datascope: A Tutorial 55

• time conversions
• associative arrays
• lists
• parameter files

In tcl, associative arrays and lists are part of the language; in c or FORTRAN there
are a set of special routines to manipulate them. The relevant man pages are
error_handling(3), epoch(3), arr(3), tbl(3), and pf(3).

Error Handling

Libraries should not, as a rule, print out error messages. On the other hand, it’s
quite difficult to pass adequate information back up the calling sequence and having
a set of return codes is very limiting and difficult to accomplish. Consequently,
there are a set of routines which maintain an error log. When a library routine
encounters a problem, it leaves a verbose message on the error log (by calling
elog_log(3)), and then returns a generic error return code. The calling program
must manage the error register. Typically, it will want to print the messages in the
error register using complain(3).

Programs often benefit from a standard error reporting routine, and the error han-
dling library provides this also. These routines should be initialized by calling
elog_init(3). die(3) prints an error message, and exits; complain prints an error mes-
sage and returns. Both routines print and clear the current error log.

Time conversion

Internally, all time calculations are based on an epoch time, quite similar to the time
returned by the UNIX time(3). This time is the nominal seconds since January 1,
1970. In Datascope, it is represented in a double precision number, which results in
an accuracy to at least the millisecond range for times of interest. However, a time
presented in seconds is difficult to appreciate, so time is often converted between
epoch seconds and some more readable format like June 22, 1992 13:34:45.345.
There are a set of routines for conversion between the two formats. The central rou-
tines might be str2epoch, which converts a fairly arbitrary time-date string to epoch
seconds, and strtime, which converts an epoch time to a standard format a bit like
the example above. Read the man page epoch(3) to learn more, and use the program
epoch(1) to perform conversions on the fly.

Programming with Datascope

56 Datascope: A Tutorial

Associative Arrays

Associative arrays, i.e. arrays indexed by a character string rather than an integer,
are quite handy for a variety of problems. One variety of associative arrays are
implemented in the arr(3) routines. In this case, the arrays are implemented as bal-
anced (red-black) binary trees. (In contrast, the associative arrays in tcl are imple-
mented as hash tables.) Much of Datascope’s internals are implemented using these
associative arrays, and Datascope sometimes returns an associative array. Read the
man page for more detail. Arrays are not directly accessible from FORTRAN.

Lists

Associative arrays and lists are complementary. Lists and arrays are used exten-
sively in Datascope’s internals. Some arguments to Datascope routines are lists, and
Datascope sometimes returns lists. Datascope indexes are sorted lists. Lists are
declared Tbl *, and the list routines all have the suffix tbl: settbl, pushtbl, gettbl,
poptbl, newtbl, etc. Lists are managed as one dimensional arrays (vectors); the
array contents are commonly (but need not always be) pointers to strings. The tbl
routines provide a variety of common list manipulations; see tbl(3) for more detail.
Some list operations are available in FORTRAN.

Parameter files

It’s often convenient to keep some configuration data for programs in a separate text
file. This allows the program to be more flexible, but avoids the problem of the
overloaded command line. The Datascope library doesn’t use parameter files
directly, but several of the command line utilities and dbe do use parameter files.
Basically, the parameter files allow a variety of configuration parameters to be spec-
ified by name in a free-format fashion in a central file. This parameter file can also
be personalized. Parameter files are read and used as associative arrays (key-value
pairs), where the values may be simple strings (scalars), associative arrays or lists.
The depth of nesting of arrays and lists has no set limit. Read pf(3) for more detail.

Overview of tcl, perl, c, and fortran solutions

The solutions in tcl, perl, c and FORTRAN to the simple problem above all look
quite similar; the differences relate primarily to the different syntax of the lan-
guages.

Datascope: A Tutorial 57

1. Each program begins by opening the database using dbopen. This operation
returns a database pointer which specifies the entire database.

2. From this database pointer, other pointers which specify the origin, the assoc,
the arrival and the site table are generated, using dblookup.

3. dbsubset is applied to the origin table, returning a view which contains only the
one origin.

4. The resulting view is joined using dbjoin, first with assoc, then with arrival, and
finally with site.

5. The joined view is sorted using dbsort.
6. Finally, selected fields from each record are fetched using dbgetv, and printed.

Overall, the process is quite similar to the process in dbe or at the command line,
but more of the hidden details become evident. Rather than specifying tables
directly by name, database pointers are used. The new calls are dbopen, dblookup,
dbquery, and dbgetv. dbopen initializes Datascope to allow tables from a database
to be used; it returns a database pointer which specifies a database. dblookup is
used to further qualify a database pointer to specify a particular table. dbquery is
used generally to find ancillary information about a database, table, or field -- in
this example, to find the number of records in a table.

Tcl/Tk interface

Tcl is a simple interpretive language designed and written by John Ousterhout. It is
widely used on a variety of platforms. It was intended as a kind of glue to put
together more complex operations, something like UNIX shells, but with more flex-
ibility. Tk is an x-windows toolkit built on tcl. It allows creating applications with
windows and other widgets from a script or interactively.

The source code for tcl/tk is freely available, and so the language can easily be
embedded in your own application. Usually, this means adding a few specialized
commands to the basic language and then writing the application in the resulting
script language. Datascope takes this approach, providing two shells: atcl (no x
windows interface) and awish (a windowing shell).

A program in tcl is a script, which may be run at the command line directly. Alter-
natively, you can just run atcl or awish, and type in the lines. This latter approach
may be more instructive, and is a useful approach when writing your own scripts;
try them out directly. Here’s the script:

#!/bin/sh

Programming with Datascope

58 Datascope: A Tutorial

This comment extends to the next line for tcl \

exec atcl -f $0 $*

package require Datascope

set db [dbopen demo r+]

set db [dblookup $db 0 origin 0 0]

set db [dbsubset $db {orid == 645}]

set db [dbjoin $db [dblookup $db 0 assoc 0 0]]

set db [dbjoin $db [dblookup $db 0 arrival 0 0]]

set db [dbjoin $db [dblookup $db 0 site 0 0]]

set db [dbsort $db arrival.time]

loop i 0 [dbquery $db dbRECORD_COUNT] {

 puts [dbgetv $db 0 $i sta arrival.time assoc.delta
assoc.phase]

}

If you’re familiar with shell programming, this will all look pretty familiar. The first
three lines are a trick to get awish running regardless of where it’s installed on your
system. In the body of the program, the square brackets replace the shell’s back-
tick, and cause a command to be executed before the rest of the line, with the results
of the execution replacing that part of the line. The curly braces correspond to sin-
gle quotes in the bourne shell. These replacements allows embedding quotes within
quotes, and commands within commands in a tcl command.

Here are the results:

AAK 706139746.35000 1.928 P

KBK 706139751.35000 2.230 P

CHM 706139752.34740 2.289 P

USP 706139752.40005 2.325 P

TKM 706139755.45010 2.566 P

AAK 706139775.33963 1.928 S

KBK 706139784.43397 2.230 S

CHM 706139787.28949 2.289 S

USP 706139788.12868 2.325 S

Datascope: A Tutorial 59

Once again, there is no conversion from epoch seconds to a readable format. How-
ever, the standard time conversion routines are available inside tcl.

In tcl, an error return from a Datascope library call raises an exception, which prints
a message, and stops the execution of a script. This is quite different from c or
FORTRAN, where you must yourself test the return code. To override this behav-
ior, use the tcl catch command.

Variables need not be declared in tcl. Database pointers are kept as lists in a vari-
able; try puts $db to see the contents. Generally, the arguments are the same as
the arguments in c, but since all tcl variables resolve to strings, there is no need to
put quotes around names like demo, origin, and arrival.time above.

Documentation on the tcl interface is limited to usage lines in the man page for
dbwish(1). It will often be useful to read the c man page when more detail about the
arguments or results is needed.

If you need to learn tcl/tk, a good place to start is John Ousterhout’s book, Tcl and
the Tk Toolkit. Once you’ve begun writing programs, you’ll probably find the
dbhelp program to be quite useful, in much the same way the man pages are useful
when programming in c.

The perl interface

The perl interface is quite similar, but with a perl flavor. In perl, the database point-
ers are kept in perl lists. This interface requires the 5.0 version of perl, not the older
4.036 version.

Here’s the perl routine:

#! /usr/bin/perl

use Datascope ;

@db = dbopen (“demo”, “r”) ;

@db = dblookup(@db, “”, “origin”, “”, “”) ;

@db = dbsubset(@db, “orid == 645") ;

@db = dbjoin(@db, dblookup(@db, “”, “assoc”, “”, “”));

@db = dbjoin(@db, dblookup(@db, “”, “arrival”, “”, “”)) ;

Programming with Datascope

60 Datascope: A Tutorial

@db = dbjoin(@db, dblookup(@db, “”, “site”, “”, “”)) ;

@db = dbsort(@db, “arrival.time”) ;

$nrecords = dbquery(@db, “dbRECORD_COUNT”) ;

for ($db[3] = 0 ; $db[3] < $nrecords ; $db[3]++) {

 ($sta, $time, $delta, $phase) = dbgetv (@db,

 qw(sta arrival.time assoc.delta assoc.phase));

 print “$sta $time $delta $phase\n” ;

}

The results are identical with the tcl results.

The c interface

Most routines in the c interface have a return code; typically zero indicates success,
and a negative value, usually dbINVALID, indicates failure. Some routines return a
database pointer, rather than an integer return code. In these cases, an error is indi-
cated by individual components of the database pointer taking the value dbIN-
VALID. (Except for dblookup, all the components take the value dbINVALID).
Error messages are left on the error log. To print them, use complain(3), die(3), or
clear_register(3).

Here’s the program in c:

#include <stdio.h>
#include “db.h”
int main()
{
 Dbptr db, dbassoc, dbarrival, dbsite ;
 int n ;
 double arrival_time, delta ;
 char sta[25], phase[10] ;
 Tbl *sortkeys ;
 if (dbopen (“demo”, “r+”, &db) < 0)

die (0, “Can’t open table knet.origin.”) ;
 db = dblookup (db, 0, “origin”, 0, 0) ;
 db = dbsubset (db, “orid == 645", 0) ;

dbassoc = dblookup (db, 0, “assoc”, 0, 0) ;
db = dbjoin (db, dbassoc, 0, 0, 0, 0, 0) ;
dbarrival = dblookup (db, 0, “arrival”, 0, 0

Datascope: A Tutorial 61

) ;
db = dbjoin (db, dbarrival, 0, 0, 0, 0, 0) ;
dbsite = dblookup (db, 0, “site”, 0, 0) ;
db = dbjoin (db, dbsite, 0, 0, 0, 0, 0) ;

 sortkeys = strtbl(“arrival.time”, 0) ;
 db = dbsort (db, sortkeys, 0, 0) ;
 dbquery (db, dbRECORD_COUNT, &n) ;

for (db.record = 0 ; db.record < n ;
db.record++) {
 dbgetv (db, 0,
 “sta”, sta,
 “arrival.time”, &arrival_time,
 “assoc.delta”, &delta,
 “assoc.phase”, phase,
 0) ;

printf (“%-5s %17.3lf %10.3lf %-2s \n”,
sta, arrival_time, delta, phase) ;

 }
 return 0;
}

The output from this program is the same as the shell and tcl versions, with some
minor differences in the number of significant digits printed, and the number of
blanks between columns.

Disregarding the syntactical differences because of the different languages, the sig-
nificant difference between this and the tcl version is the extra arguments to dbjoin.
These extra, optional arguments provide some added flexibility, allowing you to
specify the join keys explicitly, and possibly returning a list of records which don’t
join. In most cases, you’ll set these extra arguments to zero, but refer to the man
page for more information about them. Another difference is the way the sort keys
are specified to dbsort; the keys are packed into a list, and this list is passed to
dbsort. Both of these differences derive from the ability in tcl to have a variable
argument list with defaults.

The FORTRAN interface

The FORTRAN interface is as similar to the c interface as was practical. The names
are the same, but routines which return database pointers are changed to subrou-
tines with an extra argument added for the return values. Possibly all the routines
should have been changed to subroutines, since the rest return integers, and have to
be declared in the include file, since their names don’t start with the right letters (i-

Programming with Datascope

62 Datascope: A Tutorial

n). It seems to be impossible to get the FORTRAN compiler to shut up about these
unused “variables” if you never call them.

Here’s the solution in fortran:

#include “db.i”

integer db(4), dbt(4)

real *8 time, arrtime, delta

character*15 sta, phase

if (dbopen(“demo”,“r+”,db) .lt. 0)

 * call die (0, “Can’t open database”)

 call dblookup(db, db, “”, “origin”, “”, “”)

call dbsubset (db, db, “orid == 645", ”“)

call dblookup (dbt, db, “”, “assoc”, “”, “”)

call dbjoin(db, db, dbt, 0, 0, 0, 0, “”)

call dblookup (dbt, db, “”, “arrival”, “”, “”)

call dbjoin(db, db, dbt, 0, 0, 0, 0, “”)

call dblookup (dbt, db, “”, “site”, “”, “”)

call dbjoin(db, db, dbt, 0, 0, 0, 0, “”)

call strtbl(keys, “arrival.time”, 0)

call dbsort (db, db, keys, 0, “”)

call dbquery (db, dbRECORD_COUNT, n)

do i=0, n-1

 db(4) = i

 ierr = dbgetv (db, 0,

 *“sta”, sta,

 *“arrival.time”, arrtime,

 *“assoc.delta”, delta,

 *“assoc.phase”, phase,

 *0)

 write (*,10) sta, arrtime, delta, phase

10 format (a10, f17.3, x, f10.3, x, a3)

end do

end

Datascope: A Tutorial 63

The result from this program differs from the c version programs only in the num-
ber of spaces between fields.

Summary

The example problem is quite simple, of course, but shows the use of the primary
operations from several interfaces. It did not address, however, the issues of modi-
fying a field (dbputv), adding a record (dbaddv), or creating a new database by
copying the various records from a view into a new table (dbunjoin). There are man
pages for these routines, and the calls follow the general outline of the calls used
above: dbputv and dbaddv are quite similar to dbgetv. dbquery has many more
codes than dbRECORD_COUNT used above; some codes return character strings,
lists or associative arrays. Almost any information which can be read from the
schema file may also be obtained from dbquery with the proper code; dbhelp
exploits this to make it easy to explore a schema.

There are detailed man pages for all the c interface library calls; the man pages for
the other interfaces are a bit more skimpy. To see other calls which might be of
interest consult the manual pages.

In the examples above, very little error checking was performed. Real programs
should take more care.

The programs described above may be found in the antelope distribution in the
directory $ANTELOPE/example/datascope. You’ll also find a Makefile there which
can be used to produce the executables. The Makefile is fairly simple:

BIN= xc xf xperl xsh xtcl

ldlibs=$(DBLIBS)

include $(ANTELOPEMAKE)

To learn how it works, please consult the Antelope Software Development Tutorial.

Programming with Datascope

64 Datascope: A Tutorial

Datascope: A Tutorial 65

CHAPTER 7 Datascope Utilities

There are a number of specialized programs that add functionality to Datascope.
This chapter introduces the utilities; refer to the man pages for detailed information.

dbverify
provides overall consistency checks on a database. It uses the range expressions
from the schema file to check that each field has a legal value, and it can be used
to perform other simple consistency checks on a database, for instance, check-
ing to see that tables join properly. Many of these additional tests are config-
urable in a parameter file, so you may add your own special tests.

dbcheck
checks each line (record) of each file in a database for the correct length. Datas-
cope requires that files which represent tables be composed of lines which all
have the same length. If you edit these files with a text editor, it is easy to intro-
duce errors by adding or deleting a blank, or converting several blanks to a tab.
dbcheck looks for problems like this.

Datascope Utilities

66 Datascope: A Tutorial

dbdiff
compares two databases, with output resembling that of sdiff. Comparing data-
bases is difficult, and dbdiff does not do a complete job, but is very useful in
some situations regardless.

dbdoc
prepares tbl/troff style documentation directly from the schema. This can be
useful for generating hardcopy which is more readable than the schema. For
interactive use, dbhelp is more convenient.

dbset
simplifies global changes across multiple tables. For instance, you might want
to change a station name, say from AAK to AKA, in every table. dbset makes this
easy.

dbfixids
The id fields in a database typically have no intrinsic meaning; they are arbitrary
integers which provide a simple key to a table, and are often used to join two
tables. Nevertheless, it is sometimes useful to renumber these ids. This must be
done carefully, since a particular id may be present in several tables, and all the
ids must be changed in a consistent manner.

dbcrunch
Because views and indexes refer directly to a record number, many programs
(like dbe) do not usually delete records immediately; instead, all fields in a
record are set to the null value: marked for later removal. dbcrunch removes
such null records from a database or table.

dbnextid
When a new record is added to certain tables, a unique id must be generated. As
explained previously, these new ids are generally found by consulting the lastid
table, which saves the value of the previously largest integer used, and then
using the next larger integer. (If the lastid table is not present, Datascope looks
through the entire table which defines the id in question, and creates a lastid
table). dbnextid provides command line access to this function.

Datascope: A Tutorial 67

dbcp
Just as it’s useful to copy a file, it’s often convenient to create a new copy of a
database, either to modify it, or to prevent it from being modified. dbcp copies a
database to a new location. It can also be used to create a descriptor file refer-
encing the original database, or to copy a single database table.

dbremark
The CSS database has a special remark table which may be used to add a com-
ment to particular records of selected tables. dbremark provides a method of
printing or adding a comment at the command line.

dbaddv
is a command line program for adding records to a database. It has an interactive
mode, or can add a single record directly from the command line, or multiple
records by reading from stdin.

dbcalc
allows expressions to be evaluated against a single record of a table or view.
This is most useful for testing the syntax of the expression.

dbconvert
is a general purpose tool for converting from one schema to another. It’s a bit
slow, but can be very useful when your first attempt at a schema left out some
important fields or made some fields too small. You can create your new
schema (with dbdesign) and then use dbconvert to convert any old databases to
the new schema.

dbdesign
is a GUI program which simplifies the process of creating new schema files. It
can also be used to edit old schemas, or to create schema files which extend an
existing schema.

Datascope Utilities

68 Datascope: A Tutorial

dbinfer
is an ad hoc program which reads a single fixed field length record and creates a
schema file for a corresponding table, using the whitespace to define fields. This
may be useful as a first cut at the eventual schema file.

dbdestroy
removes all the tables of a database; with an option, it will also remove all the
external files (like waveform files).

	CHAPTER 1 Overview 1
	CHAPTER 2 Test Drive 5
	CHAPTER 3 Schema and Data Representation 21
	CHAPTER 4 Basic Datascope Operations 31
	CHAPTER 5 Expression Calculator 37
	CHAPTER 6 Programming with Datascope 49
	CHAPTER 7 Datascope Utilities 65
	CHAPTER 1 Overview
	Datascope: What is it?
	Datascope: Features
	Datascope: What is it good for?

	CHAPTER 2 Test Drive
	What is a relational database?
	dbe: a window on a database
	Viewing a table
	Viewing schema information
	Performing a join
	What about the join conditions?
	Arranging fields in a window
	Viewing data in a record view
	Other database operations
	Creating a subset view
	Using dbunjoin to create a subset database
	Editing a database
	Simple graphing
	Summary

	CHAPTER 3 Schema and Data Representation
	Database Descriptor Files
	Representation of Fields
	Schema Description File
	Schema Statement
	Attribute Statement
	Relation Statement
	Datascope Views
	Reserved Names for Fields and Tables
	A word of caution regarding id fields

	CHAPTER 4 Basic Datascope Operations
	Reading and Writing Fields and Records
	Deleting Records
	Subsets
	Sorts
	Grouping
	Joining Tables
	Inferring Join Keys
	Inheritance of keys
	Specifying Join Keys
	Speed and efficiency
	Summary

	CHAPTER 5 Expression Calculator
	Basic Operators and Database Fields
	Data Types
	String Operations
	Logical Operators
	Assignments
	Standard Math Functions
	Time Conversion
	Spherical Geometry
	Seismic Travel Times
	Seismic and Geographic Region functions
	Conglomerate functions
	External functions

	CHAPTER 6 Programming with Datascope
	Sample Problem
	At the command line
	Database pointers
	A few programming utilities
	Error Handling
	Time conversion
	Associative Arrays
	Lists
	Parameter files
	Overview of tcl, perl, c, and fortran solutions
	Tcl/Tk interface
	The perl interface
	The c interface
	The FORTRAN interface
	Summary

	CHAPTER 7 Datascope Utilities
	dbverify
	dbcheck
	dbdiff
	dbdoc
	dbset
	dbfixids
	dbcrunch
	dbnextid
	dbcp
	dbremark
	dbaddv
	dbcalc
	dbconvert
	dbdesign
	dbinfer
	dbdestroy

