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Here we perform additional simulations to test the impact of a physically reasonable scaling of the
d-parameter with earthquake magnitude. Furthermore, we test possible correlations between the
magnitude of the largest earthquake in the analyzed earthquake catalog and the estimated α-value,
and finally, we test the impact of inhomogeneous background activity.

Simulations

We assume a self-similar aftershock pattern, that is, we assume that in Eq.(2), the d-parameter
scales according to d = d0L, where d0 is a constant related to the aspect ratio between the char-
acteristic width and length of the aftershock cloud. For the magnitude-dependence of the rupture
length, we use again the empirical relation of Wells and Coppersmith (1994): L =

√
10−3.49+0.91 M

[km]. In the following, d0 is set to 0.01.

We analyze Monte Carlo simulations of the ETAS model with pre-set α=1. The other parameters
are chosen by fitting the ETAS model to the seismicity preceding the 1992 M7.3 Landers, California,
earthquake in the region -119W to -115.5W and 32.5N to 36.5N and the time interval between
t1=1/1/1984 and t2=6/27/1992. The data set included N=1537 earthquakes with magnitude
M ≥ 3. We optimized the parameters µ,K, c, p, q, q by maximum likelihood method and obtained:
µ=0.06 [1/day]; K=0.007; c=0.006 days; p=1.08; and q=1.45.

The simulations are done for a 100 km x 100 km box and a time interval of 1 year. Earthquake
magnitudes are randomly chosen from a Gutenberg-Richter distribution with b=1, within Mmin and
Mmax which are specified below. To allow a targeted simulations, a mainshock with a magnitude
of Mmax is set in each simulation to occur at time 0 in the center of the box.

Parameter estimation

For each simulation, the estimation of all model parameters is performed again by the maximum
likelihood method. To study the impact of taking the spatial distribution into account, we use the
following three models for inversion:

1. the ”no-space” model which uses only the time-sequence of earthquake occurrences (i.e. ne-
glect the spatial information)

2. the ”d=const” model which assumes that d is constant; that means, we use in this case a
slightly wrong model for the spatial kernel.

3. the ”d(M)” model which uses the true kernel d = d0L(M) with the Wells & Coppersmith
scaling.

Test 1: Results for the d(M)-model

For the first test, we used a constant magnitude range Mmax−Mmin=3.5 to ensure similar statistics,
but change the size of the mainshock. In this way, we can test the effect of the relative size of the
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Figure 1: The α-estimations with their standard deviations for the space-dependent and space-
independent models are shown with different colors (continuous lines: for earthquakes without
location error; dashed lines: for earthquakes with realistic, Gaussian distributed, location errors).
Here the magnitude interval is constant in all cases, in particular, the minimum magnitude is
Mmax-3.5.

mainshock with regard to total size of the region under consideration. Furthermore, it allows us to
analyze the impact of epicenter location errors.

Figure 1 shows the estimated α-parameter for the three different inversion methods. It can be clearly
seen that only the ”no-space”-model is able to reproduce the input-value of α, whereas both models
using the space-informations clearly underestimate the α-value. However, the underestimation is
less pronounced for the model using the correct scaling of d.

Real earthquake catalogs will always consist of location errors. Theoretically, it can be expected
that for mainshocks with a rupture length in the order of the location error, the apparent aftershock
distribution will be almost isotropic in space and thus the bias of inversions using isotropic kernels
should become smaller. Therefore we add realistic Gaussian distributed location errors on the true
(simulated) epicenters and repeat the estimation. For a standard deviation of 1km, the results
are shown in Fig. 1. The bias decreases slightly in the case of the ”d=const”-model but does not
vanish. For larger location errors, we find that the inversion with the space-dependent models
becomes completely unstable and that the uncertainties of the α-estimations become huge. The
likely reason is that the power-law kernel cannot fit the almost Gaussian distributed aftershock
activity well. Finally, we add magnitude errors with standard deviation of 0.1 and repeat the
parameter estimations. We find that this does not influence the results systematically.

Test 2: Dependence on Mmax

Now we will test whether the estimation of the α-parameter depends on the magnitude range of our
observation. For that, we analyze simulations where the minimum magnitude is set to Mmin=3,
whereas Mmax is varying between 4.5 and 7. The resulting α-estimation based on the ”no-space”-
model is shown in Fig.2. We find that the true α-parameter can be reconstructed in all cases
without any systematic error, however, the uncertainty is largely increased for smaller Mmax. The



3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 4  4.5  5  5.5  6  6.5  7  7.5

al
ph

a-
pa

ra
m

et
er

mainshock magnitude

Figure 2: The figure shows the α-estimations based on the space-independent model as a function
of the mainshock magnitude, where the minimum magnitude is fixed to 3.0, i.e. the magnitude
interval is varying.

enlarged uncertainty is mainly related to the smaller number of events in the simulated catalogs
with small Mmax.

Test 3: Inhomogeneous background activity

Background activity is likely to be related to fault structures and thus cannot generally be expected
to be uniform in space. This could be another reason for the underestimation of the α-parameter.

To test this, we modeled the probability distribution of the background seismicity by a fractal
surface of dimension D (Turcotte, 1997), where we set the ratio between the absolute maximum and
minimum to 1000. For the simulation, we neglected the anisotropy of aftershock clouds and used an
isotropic kernel in order to analyze the possible effect of inhomogeneous background distributions
separately. The ”d(M)”-model is in this case the true model for the triggered activity but not
for the description of the background activity. The results of the parameter inversion for the
”d(M)”-model are shown in Fig.3. The estimations are scattering around the true values and the
inhomogeneity seems to have no significant effect on the parameter estimation.

It is important to note that this is not an exhaustive test because of the large variety of possible
model setups, in particular, alternative spatial distributions of the background seismicity. Thus
our investigation is not conclusive, however, it seems to indicate that the spatial inhomogeneity of
the background seismicity does not significantly influence the α-estimation.

References

Turcotte, D. L. (1997). Fractals and Chaos in Geology and Geophysics, Cambridge University
Press, 1997.



4

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

K

alpha

nospace: D=2.1
         D=2.5

  d(M):  D=2.1
         D=2.5

Figure 3: The estimated α and K-parameters for simulations with a fractal distribution (dimension
D=2.1 and 2.5) of the background activity. The input value is shown as a big blue cross. In the
simulations, an isotropic spatial kernel for aftershocks was used and the magnitude range was set
to [3.5, 7.0].


