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Introduction 

The Fourier transform integrand visualization (FTIV) method introduced here is 
based on a simple graphical presentation of the Fourier transform integrand as a 
topographic surface. FTIV is useful for understanding the important but often 
underappreciated contribution of the frequency-domain representation’s phase spectrum 
to the shape of the function in the real-space. As the frequency-domain is the natural 
space for describing waves, this approach can also be used to develop insights into 
complex wave behavior, such as the relationship between traveling and standing waves 
and the evolution of the shape of a dispersing wave-train. 

Figures 1-4 are the same as the figures in the printed version. Figure 5 in this e-
supplement is a modified version of Figure 5 in the printed version. Figures 6 and 7 in 
this e-supplement are in addition to those in the printed version. The equations are 
numbered such that the whole number equations in red are the same as in the printed 
version. Additional equations that are only in this e-supplement are numbered with 
decimal values that count equations between those in the printed version. 

Background 

Introductory physics and engineering textbooks, which typically encourage 
visualization, often start their discussion of Fourier analysis with a figure showing how 
one can approximate a function in some real-space by adding together sinusoids in an 
appropriate frequency-domain (Figure 1(A)). The introduction of Fourier analysis is also 
oftentimes associated with solutions to differential equations; especially the wave 
equation for which sinusoids are also solutions. In this case, a relationship between the 
Fourier representation, which otherwise seems arbitrary, and the physics of the problem 
is established, allowing one to relate the two and provide insights into the physics. We 
will use examples with traveling and standing waves to show how a graphical 
presentation can illustrate fundamental ideas such as the shift theorem, superposition and 
stationary phase and how they affect the time-domain shape. 

In the typical introduction, the real-space is usually time or space (distance), and 
we will use the terms time-domain or distance-domain as appropriate to refer to them. 
Figure 1(A) shows a time-domain function, in this case a “boxcar” centered at 0=t  and 
the first few terms of the Fourier series that approximates it 
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(we will clarify the 1ω  term below, for 0 10,  0 0n ω ω= = × =  and ( )0cos 1tω = , so the 
0a  term is just a DC shift and treated separately). This is not the most general (it can only 

represent symmetric functions for example) or elegant form of the Fourier series, but it 
allows a graphical illustration that presents the fundamental ideas. The frequency-domain 
representation of the boxcar is the set of weights, na , used in the Fourier series sum. 
Figure 1(A) also shows the time-domain approximation obtained from summing a larger 
number of terms in the Fourier series. Note that the final sum, ( )tu  , is in the time-
domain only, i.e. it is a function of time only, while the frequency-domain representation 
is the series of weights, na , associated with frequency only. The functions, ( )cos n tω , in 
Eq. (0.1) are known as basis functions, and they have both time and frequency in their 
argument. We will use the term phase to refer to their arguments. The set of basis 
functions can be used in a Fourier series to generate any other function. The basis 
functions need to have two important properties. First they must be mutually orthogonal 
(perpendicular), which means you cannot make any of the basis functions from a sum of 
the others. This is expressed mathematically as 

( ) ( ) ( )cos cosn mt t dt n mω ω δ
∞

−∞
= −∫         (0.2), 

where ( )cos n tω  and ( )cos mtω  are the thn  and thm  basis functions and ( )mn − δ  is 
known as the delta function and is defined as 
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where mnx −=  in this case. The set of basis functions must also have the property that 
they are “complete”. This means that any arbitrary function, meeting some general 
conditions to ensure the Fourier series converges, can be represented using only this set 
of functions. While Figure 1(A) suggests the Fourier series represents a single boxcar, the 
Fourier series is actually periodic (more precisely, the Fourier series is only applicable to 
periodic functions), with the period based on 1ω . If we plotted ( )tu   for a range of t  
larger than that shown in Figure 1(A) we would see this periodicity as a repetition of the 
boxcar every mT , where 12T π ω=  is the period and m  is an integer. Note that the 
function u  is continuous in the time-domain, but its representation in the frequency-
domain is discrete. 

The general form of the Fourier series, which can represent arbitrary periodic 
functions is, 

( ) ( ) ( )0

1
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This can be written as 
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This form will facilitate making the FTIV figures. The na , nb  and nc are all real with 

22
nnn bac +=         (1.1) 

and the phase value associated with the thn  or nω  term is 

1tan n
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⎝ ⎠
. (1.2) 

The nφ  term provides a constant phase shift in the argument ( )n ntω φ+  of the basis 
function in Eq. (1). Note the distinction between the phase argument of the basis 
function, the expression ( )n ntω φ+ , and the phase value, nφ ,  which is part of the phase 
argument. 

The elegant form of the Fourier series is 

( )      ni t
n

n
u t F e ω

∞

=−∞

= ∑ ,        (1.3) 

which, with ni
n nF c  e φ= , can be written 

( ) ( )     n nn n i ti i t
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∞ ∞
+

=−∞ =−∞
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(We will use lower case letters for real, and upper case letters for complex values or 
functions.). 

The forms in Eq. (0.4) and Eq. (1.3) are the forms that are usually presented. They 
are difficult to use for graphical presentations, however, as they have two parts (the 
weights for both the sines and cosines, or the magnitudes and phase values for the 
complex exponential) that cannot be combined in a single illustrative figure. This is one 
reason why the boxcar was chosen for Figure 1; it is symmetric about zero making 

0nφ = . We will find the form in Eq. (1), however, to be very useful in for making the 
FTIV figures since the phase value, nφ , simply shifts or moves the position of the cosine 
wave along the t  axis. This allows the full frequency-domain representation to be shown 
in terms of its amplitude and phase in a clearly interpretable form in the FTIV figures. 

The discrete sum of the Fourier series can be generalized to the continuous 
inverse Fourier transform given by 
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where the weighting function  

( ) ( ) ( )  iF a e φ ωω ω=        (1.6) 

is known as the Fourier transform and is the frequency-domain representation of ( )tu  . 
( )F ω  is a continuous function of ω  only, and is complex with a magnitude, ( )a ω , 

known as the amplitude spectrum, and phase, ( )φ ω , known as the phase spectrum.  The 
functions ( )u t  and ( )F ω are known as a Fourier transform pair, expressed as  

( ) ( )u t F ω↔ ,        (1.7) 

and represent the same function specified in the two domains. While there are some 
additional conditions on the time-domain function to ensure that the Fourier transform 
integral is well behaved, the Fourier transform is restricted to absolutely integrable, non-
periodic functions. 

Following Eq. (1), it is more useful for FTIV to write the inverse Fourier 
transform as  

( ) ( ) ( )( ) 
 os   u t c c ωt dω φ ω ω

∞

−∞
= +∫ , (2) 

where the phase spectrum component, ( )ie φ ω , of the Fourier transform is combined with 
the basis function component, i te ω . 

Given the weights for the Fourier series, it is easy to show how the summation 
begins to look like the boxcar after summing just a few terms, and the typical mental 
pictures of the Fourier series and the inverse Fourier transform are based on the idea of 
summation. How does one obtain the Fourier transform weights, na , nb , or ( )nF ω  for 
the Fourier series, or the function, ( )F ω , for the inverse Fourier transform? Using the 
form of the Fourier series in Eq. (1), and ignoring the 0 2a term (which will go away 
upon integration for 0≠m ), consider 

( ) ( )cos mu t t dtω
∞

−∞
=∫                                                                (2.1) 

( ) ( ) ( ) ( )
1

cos sin cosn n n n m n
n

a t b t t dt a n mω ω ω δ
∞∞

−∞
=

⎛ ⎞⎡ ⎤+ = −⎜ ⎟⎣ ⎦⎝ ⎠
∑∫ . 

We arrive at this result by changing the order of integration and summation and using the 
orthogonality of the basis functions given in Eqs. (0.2) and (0.3). In the standard form for 
the Fourier series weights we have 
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and for the more elegant form, 

( ) ( )
 1   

2
ni t

nF u t e dtωω
π

∞ −

−∞
= ∫  . (2.4) 

We can interpret the weights by turning to the mathematical concept of 
correlation, which, in this context, provides a measure of the similarity of two functions. 
The general expression for the correlation between the functions ( )tg   and ( )th   is 

( ) ( )g t h t dt
∞

−∞∫ .        (2.5) 

If the two functions are the same, the correlation will be a maximum. If they are 
negatives of one another, the correlation will be the same magnitude but negative. For 
functions that are not the same, the correlation varies between these two limits and has a 
minimum magnitude of zero for two functions that are completely uncorrelated (two 
different Fourier basis functions for example). The expressions in Eq. (2.2-2.4) are 
correlations that quantify how similar the time-domain function, ( )tu  , is to each of the 
basis functions.  

As with the Fourier series, we will find it helpful to use the form 

( ) ( ) 1     cos   
2n n nc u t t dtω φ
π

∞

−∞
= +∫ ,    (2.6) 

where nc  is the Fourier series weight and nφ  is the phase value in Eq. (1.2), and these 
terms give the amplitude and phase spectra respectively. This is a form of the correlation 
function 

( ) ( ) ( )q t g h t dτ τ τ
∞

−∞
= +∫ ,       (2.7) 

which finds the correlation between the functions as a function of a shift, t . The value of 
nc  and nφ  are found from the maximum of the correlation function as a function of φ  

( ) ( ) ( ) 

0 2

1, max    cos   
2n n nc u t t dt

φ π
φ ω φ

π
∞

−∞≤ <

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ .     (2.8) 

Conceptually, the nc  and nφ  are found together by searching over values of φ , which 
simply shifts the cosine basis function back and forth along the time axis, to find the 
maximum value of the integral (correlation) for nc . Due to the periodicity of the cosine 
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function, we only have to examine phase shifts over a range of π2  (for periodic signals 
the resulting correlation is also periodic, and there is no single shift for maximum 
correlation). In practice, we can use the standard forms in Eqs. (2.2) and (2.3) to calculate 
the weights, and then use Eqs. (1.1) and (1.2) to calculate the nc  and nφ . We could also 
evaluate the correlation function (which can be done easily in the frequency-domain) and 
choose its maximum value and the associated shift. The weights in the frequency-domain 
are therefore proportional to how correlated or similar the time-domain function and the 
shifted basis functions are. We now have two values associated with each frequency, nω ; 
the weight, also called the magnitude, nc , and a phase shift, nφ , that are easily interpreted 
both physically and in the figures of the FTIV method. 

To find the Fourier transform, ( )F ω , the expression for the Fourier series 
weights in Eq. (2.6), can be generalized to 

( ) ( )
 1     

2
i tF u t e dωω ω

π
∞ −

−∞
= ∫ , (2.9) 

which is also a correlation between ( )tu   and tie  ω− , although it is difficult to visualize 
and is not usually presented as such. Following the treatment of the Fourier series, with 
( ) ( ) ( )    iF c e φ ωω ω= , we can write 

( ) ( ) ( )( )cosc u t t dtω ω φ ω
∞

−∞
= +∫ ,       (3) 

where, as is the case with the Fourier series, ( )φ ω  is determined such that ( )c ω  is a 
maximum. 

Note that the naming of the various Fourier entities is not consistent, and there are 
several arbitrary choices in the definitions. The Fourier series and inverse Fourier 
transform produce the time-domain representation from the frequency-domain 
representation, while the Fourier transform, or forward Fourier transform, produces the 
frequency-domain representation from the time-domain representation. There is no 
general name for the expression to generate the weights of the Fourier series, Eqs. (2.2-
2.4, 2.6), nor is there an inverse Fourier series. The signs of the exponential factors in 
Eqs. (1.5) and (2 .9) must be the negatives of one another, but the selection of the sign is 
otherwise arbitrary. The π21  scaling factor may also be placed in the definition of the 
inverse Fourier transform Eq. (1.5) rather than Eq. (2.9), placed symmetrically on both 
the forward and inverse transforms as π21 , or done away with altogether by a variable 
substitution 2n nf πω= . Mathematicians, physical scientists, and engineers each prefer a 
different convention. In general, in this tutorial presentation, we will concentrate on the 
functional forms and graphics and not show the scaling factors. 

Fourier Transform Integrand Visualization 

It is difficult, unfortunately, to illustrate many interesting properties of the 



Electronic Supplement to  
Student Guide: Making Waves by Visualizing Fourier Transformation  by Robert Smalley, Jr. 
EduQuakes column from Seismological Research Letters Volume 80, Number 4 July/August 2009 

7 

relationship between the frequency-domain and time-domain behaviors, especially those 
related to the phase spectrum, using figures such as Figure 1(A). The vertical axis in the 
bottom portion of Figure 1(A), represents frequency as one goes between the labeled, 
horizontal frequency axes. For the plot of each weighted sinusoidal component, shown in 
black, however, the individual vertical axes represent amplitude for that component. The 
change in amplitude and sign of the sinusoidal terms is due to the Fourier weighting for a 
boxcar, which is shown in Figure 1(B) for both the continuous Fourier transform (green 
curve) and the Fourier series (green circles). In Figure 1(B), the values shown for the 
Fourier transform and Fourier series have been scaled to make the two plots overlay one 
another, illustrating they are the same function (almost: the Fourier series is periodic and 
the Fourier transform is a single boxcar). A number of blue circles are also shown in the 
lower part of Figure 1(A) that define lines in ( ),t ω  where the argument to the sinusoid, 
and, therefore, the value of the sinusoid, is constant. The lines connecting these points are 
known as lines of constant phase. The argument to the sinusoidal basis function, the 
phase, is the same along each of them. We will return to these lines later and see that they 
are important in understanding the shape of the time-domain function. 

FTIV can be used to provide a view of the frequency and time-domain Fourier 
pairs that more clearly illustrates the relationship between the frequency and time-domain 
representations of a function. In Figure 2(A), we show the basis function component of 
the integrand for both the forward and inverse Fourier transforms as a surface in ( ),t ω  
space that is formed by draping an “altitude” color-coding over an illuminated 3-D view 
of the topography, 

( ) ( ), cosz t tω ω= . (3.1) 

The application of lighting and shading helps the brain visualize the surface. Sums over 
frequency, i.e., sums along lines parallel to the frequency axis in Figure 2(B), 

( ) ( )
max

1
cos

n

m n n m
n

u t c tω
=

= ∑ , (3.2) 

generate the inverse Fourier transform and produce the time-domain function also shown 
in Figure 2(B). Note that we cannot do continuous math on the computer and, therefore, 
simulate the continuum by taking dense, discrete samplings in both ω  and t . Integration 
over ω  is replaced by summing over this dense sampling. The additional discretization in 
time will introduce additional properties and limitations to the application of Fourier 
analysis, specifically a maximum frequency related to the time step and a periodicity in 
the frequency-domain with respect to this maximum frequency. While the differences 
between continuous math and discrete math are interesting and important, and have to be 
taken into account when producing the figures, they will complicate the current 
discussion, and we will not discuss them further. We are, therefore, simulating the 
inverse Fourier transform to generate the images in the figures using Eq. (3.2) and not 
using the Fourier series, Eq. (1). We will switch freely between the two forms – sums or 
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integration – as needed. Eq. (3.2) was used to produce the time-domain function shown 
along the time axis of Figure 2(B) (the time-domain function is rescaled for the graphics 
presentation). While this method of calculating the inverse Fourier transform is 
computationally inefficient, it gives a very clear view of the process. 

If we take the approximation for the boxcar, ( )tu  , calculated using Eq. (3.2) and 
shown in Figure 2(B), and use it to calculate its Fourier transform, we obtain the same set 
of weights that we started with, as expected and shown in Figure 2(C). As before, to 
produce the graphic display we are actually calculating 

( ) ( ) ( )
max

1
     cos  

m

n m n m n
m

c u t tω ω φ
=

= +∑  (3.3) 

on the computer where  t , ω , and φ  are discretized. 

The topographic surface in Figure 2(A) is composed of just the basis function 
factors of the Fourier transform integrand. The time- and frequency-domain 
representations are shown on the appropriate axes. To go from one representation to the 
other, we multiply along one direction and sum along the other as shown by the flow 
arrows at the top right of Figure 2(A). We can see that the summation and correlation 
views can be applied to transforming in either direction. The process, but not the FTIV 
fields (compare Figures 2(B) and 2(C)), is the same. Our natural bias from existing in the 
real-space domain is what determines which view is the most useful as an explanatory 
tool for conceptualizing the forward and inverse transforms. One can also see in Figure 
2(C) that the boxcar correlates well with the lower frequency components of the basis set, 
particularly those whose period is greater than the real-space width of the boxcar. The 
pattern of relative increases and decreases in correlation for the higher frequency 
components of the basis set contribute to making the corners and sides of the boxcar 
sharp and vertical.  

To better understand how the phase spectrum in the frequency-domain affects the 
shape of the time-domain function, we will consider a function in which the frequency-
domain weights are constant, ( ) 1c ω = . Since the amplitudes are all equal, the shape of 
the time-domain function will now be completely determined by the phase spectrum, or 
how the various sinusoidal components “line up”. We will start with the simplest phase 
spectrum specification in which the phase is a constant independent of frequency and is 
equal to 0 at 0=t , i.e. all the sinusoidal waves “line up” at 0=t , shown in Figure 3(A) 
(which shows the positive frequency portion of Figure 2(A)). This phase spectrum 
produces a narrow spike in the time-domain located at 0=t  which is a delta function, 
Figure 3(B). In this case of uniform weights and 0nφ = , it is easy to see the lines of 
constant phase in the basis function argument of the Fourier transform integrand, as they 
are also contour lines of constant amplitude in the Fourier transform integrand (Figure 
3(A)). This one-to-one relationship between the behavior of the phase argument and the 
value of the Fourier transform integrand,  
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( ) ( ), cosn nz t tω ω φ= + ,        (3.4) 

for the delta function, that if one is a constant so is the other, holds along any single 
contour of ( , )z t ω . The relationship does not hold between two distinct contours in the 
Fourier transform integrand having the same value, in which case the phase arguments 
will differ by 2 nπ . We will, therefore, equate single contours in the FTIV plot for the 
delta function with constant value for the phase argument in the remainder of this 
presentation. This one-to-one relationship between the Fourier transform integrand values 
and the underlying phase argument is not true in general as can be seen in Figure 2(B) for 
the boxcar. 

We will now use Figure 3 to illustrate a key relationship between the phase 
argument and the time-domain shape of a function. In Figure 3(C) running sums, or 
integrations, over frequency are shown along two vertical profiles in the FTIV image. In 
this case, we know the expression of the function along the vertical integration paths in 
the Fourier transform integrand, ( )cos tω , and note two things: that the integral of this 
function is non-zero only at 0=t , where the phase argument is a constant (zero), and that 
at all other times the integral is zero (small), and the phase argument varies linearly with 
ω . At 0=t  all the Fourier transform integrand terms, and their phase arguments, are 
constant, as indicated by the vertical white ridge through the FTIV image. The running 
sum at 0=t  is a linearly increasing function of the frequency. At 49.0=t , the phase 
argument varies linearly, and the values along a vertical profile oscillate harmonically, as 
indicated by the oscillating gray scale along a vertical profile in the FTIV image in 
Figure 3(C). The running sum or integral over frequency for this oscillating function is 
also oscillating and remains small. In general the integral of an oscillatory function over a 
large number of cycles is zero. These two observations are the key to the principle of 
stationary phase, which says that for functions that are oscillatory over most of their 
range, the only non-zero contributions to the integral of the function come from the 
regions where the function is non-oscillatory (e.g. Udías, 1999). We will examine the 
principle of stationary phase in more detail in the discussion of dispersion. In the 
following discussion we will refer to the pattern in Figure 3(C) as a skirt pattern, with 
each line of constant phase argument being a skirt. We will get constructive interference 
when the skirts are vertical and destructive interference when they are sloping as we 
cross them along vertical summation or integration paths. 

Note that our sum over a finite frequency range, plotted in Figure 3(B), actually 
produces an approximation to the delta function in the time-domain 

( ) ( )
( ) ( )0

0

0
0

0

sin
cos sinc

t
t d t

t
ω

ω

ω
ω ω ω

ω−
∝ =∫ ,           (3.5) 

which is known as the sinc function. If we had taken an exact time-domain boxcar in 
Figure 2(C) instead of the approximation obtained from Figure 2(B), we would not have 
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obtained the same sinc function we started with in the frequency-domain (we would still 
have obtained a sinc function, but of a different width). Eq. (3.5) introduces a 
fundamental property relating the frequency and real-space extents of a function. The 
more localized a function is in one domain, the more spread out it is in the other. For 0ω  
small, i.e. narrowband in the frequency-domain, ( )0sinc tω will be wide in the time-
domain, while for 0ω  large, i.e. broadband in the frequency-domain, it will be narrow in 
the time-domain. The narrowest function in the frequency-domain is a single frequency, a 
delta function, which is an infinite extent sinusoid in the time-domain. Similarly, as 

0ω →∞  in the frequency-domain the width of ( )0sinc 0tω →  in the time-domain 
producing the delta function (Figure 3(B)). Roughly speaking, the product of the widths 
of the function in the two domains is a constant. This is a general property of the 
relationship between any Fourier transform pairs. It appears in the wave particle duality 
concept of quantum mechanics as the Heisenberg Uncertainty Principle, where the 
probability density functions for both position and momentum, and time and energy, are 
Fourier transform pairs (Gubbins, 2004). We will see various forms of this integral in the 
discussions that follow. 

Examples 

Traveling waves to standing waves and back. To illustrate the features of the FTIV 
presentation, we will consider two examples. In the first example, we will look at two 
waves traveling in opposite directions on a string, illustrating the superposition of waves 
and the relationship between traveling waves and standing waves. In the second example, 
we will look at a dispersing wave-train and relate the behavior in the frequency-domain 
to the real-space wave shape and behavior. In order to concentrate on the relationships 
between the frequency and real-space representations in both cases, we will take the 
initial disturbance to be a delta function at 0=x  and 0=t  (Figure 3(A) and (B)). 

It is easy to show that functions of the form  

( )vtxu ±          (3.6) 

in the real-space are traveling wave solutions to the wave equation  

2

2

22

2 1
t
u

vx
u

∂
∂

=
∂
∂ .         (3.7) 

This is known as D’Alembert’s solution, and it represents the movement of an arbitrary 
shaped wave of constant shape at a velocity, v . Consider solutions to the wave equation 
of the form  

( )cos kx tω± ,        (3.8) 

 which represent sinusoidal waves traveling to the left or right, respectively, at velocity  
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v
k
ω

=          (3.9) 

in both the distance-domain and the FTIV space. The argument has been changed to use 
the wavenumber,  

λ
π 2

=k ,        (3.10) 

in radians/distance unit and the angular frequency,  

λ
ππω vf   2  2 == ,      (3.11) 

in radians/time unit. With this change, the argument is in units of radians, rather than 
distance, and is related to the wavelength, λ , and angular frequency, ω , of the wave, 
rather than the velocity. This change ties the argument to the FTIV image, where we can 
see the wavelength and frequency, but not the velocity. The wave equation is linear, and 
by the principle of superposition, which allows us to combine solutions to the wave 
equation to produce new solutions, we can add any number of solutions together to make 
a new solution. Now consider a solution to the wave equation that is the superposition of 
two sinusoidal waves that are the same except for their direction of travel 

( ) ( ) ( ), cos cosu x t A kx t A kx tω ω= + + − .  (4) 

( ) ( ) ( ), cos cosu k A kx t A kx tω ω ω= + + − .  (4.1) 

Mathematically either ( ),x t  or ( ),k ω  can be the independent variables, which is why we 
wrote both above, but our bias of living in the ( ),x t  domain leads us to normally select 
these as the independent variables. Using simple trig identities Eq. (4) can be rewritten as  

( ) ( )2 cos cosu A t kxω= , (4.2) 

a sinusoidal wave that is fixed in space, ( )cos kx , whose amplitude is modulated 
harmonically in time, ( )cos tω . Waves of this type are known as standing or stationary 
waves. There are a large number of web pages, many of which include animation, that 
show how the combination of traveling waves produces standing waves, and we do not 
show that here. The spatial part of Eq. (4.2) is zero, or has “nodes”, at kx nπ=  for 

1,  2,  ...n =  For a string of length L with both ends fixed, the ends must be on nodes. 
Letting the ends of the string be at 2/Lx ±= , we find that for all wavelengths 2 /L nλ =  
for  1,  2,  ...n =  both ends of the string are nodes. When pairing the waves as we did 
here, you see only the standing wave when looking at the sum of the waves. Nothing 
seems to be going anywhere, as it is in the math of the “matched” traveling waves, but 
you do not see the traveling waves individually. Note that we have switched the real-
space axis from time to distance. The wave in real-space now corresponds to a snapshot, 
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at a fixed time, of the wavefield in space, similar to a snapshot of the waves on the 
surface of a pond after having thrown in a pebble. With this change in axis, frequency 
will mean spatial frequency in cycles/distance unit rather than cycles/time unit, and we 
will specify frequency using spatial frequency, kf  or wavenumber, k . We could also 
produce a real-space time series at a fixed position, but the wave snapshot is easier to 
visualize. The time series gives the time history of the motion at a fixed position, the 
displacement history of a cork floating in the pond into which we threw our pebble, and 
the final result is a seismogram. The time and distance-domain figures are 
indistinguishable in the sense that one cannot tell, without the labeling of the axes, if one 
is looking at a snapshot of the wave in space or a time history (seismogram) of the wave 
at a fixed position. 

We will now combine the principle of superposition together with Fourier 
analysis, which says we can make arbitrary functions from weighted sums of sines and 
cosines. For simplicity, consider the delta function again. Start with two of the delta 
functions whose FTIV images are shown in Figure 3(A). Let each one propagate at the 
same velocity, v , with one wave going to the left and the other one to the right (Figures 
4(A) and (B)). As all components travel at the same velocity, after a time  1t  the delta 
functions move without a change of shape to new positions 1x vt= ± . This is just 
D’Alembert’s solution. We can use superposition to add the individual traveling 
wavefields in Figures 4(A)-ii and (B)-ii directly to obtain the combined traveling 
wavefield in Figures 4(C)-ii where the waves “pass through” one another. Returning to 
the two delta functions, since the order in which we do the additions/integrations does not 
affect the result, we can first combine each pair of Fourier components at a given 
frequency to make a standing wave at that frequency and then integrate, or sum, these 
standing waves over frequency. Combining the FTIV fields in Figures 4(A)-i and (B)-i 
gives the FTIV field shown in Figure 4(C)-i, where one can see patterns reminiscent of, 
but not the same as, the patterns in the FTIV image for the individual delta functions. 

There is another view of the FTIV field shown in Figure 4(C)-i obtained by 
examining the two parts of the product, ( )cos tω  and ( )cos kx , in the standing wave 
view, shown on the right side in Figure 4(C)-i. The ( )kx cos  part is the same as the delta 
function in Figures 3(A) and b. At 0=t , ( )cos 1tω = , and the standing wave view has a 
delta function at 0=x . At some later time, 1tt = , and remembering that the ω  for each 
Fourier component is a linear function of k  (Eq. 3.9, we will reserve writing ( )kω  for 
the case of dispersive waves where the relationship between ω  and k  is not linear), the 
inverse Fourier transform at each position is 

( ) ( ) ( ) ( )1 1 1, cos cosu x t t kx dk kx tω δ ω
∞

−∞
= = ±∫  (5) 

by the orthogonality of the cosine functions in the integrand, producing the traveling 
wave delta functions in Figure 4(C)-ii at positions  
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1
1

tx vt
k
ω

= ± = ± , with 
22
LxL

≤≤− .    (5.1) 

At time 1t , therefore, the ( )1cos tω  term effectively selects two vertical profiles at x±  in 
the FTIV image of the delta function at 0=x  that have the same angular frequency as 
the modulation in time, as is shown graphically in the right hand side of the FTIV image 
shown in Figure 4(C)-i. The integrand at x±  is proportional to 2cos , which is ω∀≥  ,0 . 
At all other locations the integrand is oscillating, and, as we have seen before, integrates 
to zero. 

Another feature of the standing wave viewpoint is that it can generate a more 
complete construction of the wavefield. The traveling and standing wave views discussed 
above correspond to two, of several, general approaches to generating synthetic 
seismograms: ray tracing and modal analysis. Ray tracing has the advantage that each 
pulse or phase (a new use of the term phase meaning the arrival of a specific pulse, such 
as the P phase, on the seismogram) in the synthetic seismogram is identifiable and has a 
known ray path (this corresponds to the process illustrated in Figure 4(C)-ii). The 
disadvantage is that we only get the phases, or ray paths, we specify. That is one of the 
reasons we can identify them, and dispersion (which we will do next) cannot be handled 
easily. In the modal analysis method, we get the complete seismogram, and it is easy to 
include dispersion, but we cannot easily identify the phases, ray paths, etc. (the process 
illustrated in Figure 4(C)-i). In the modal view, if we let t increase beyond the time for 
the delta function to travel to the end of the string, it will correctly generate the series of 
inverted, reflected waves produced each time the waves arrive at the fixed ends of the 
string. This “feature” can be explained two ways. The first, which works for both the 
modal and ray tracing views, is based on the infinite extent of the harmonic waves 
combined with the natural periodicity imposed by the boundary conditions, in our case 
the fixed ends. In this view the two sets of mathematically defined periodic waves, 
extending from ∞∞−  to , one going to the right and the other to the left, move into and 
out of the region 2 2L x L− ≤ ≤  where the string exists. These two waves, as they pass 
through one another, always combine in such a way that at the ends of the string they 
cancel to meet the boundary conditions there (fixed). The second is that in the modulated 
standing wave view, the ( )π2 mod  periodicity of the modulation in time,  

( ) ( )( )cos cost t mTω ω= + ,       (5.2) 

provides the reflected waves, both inside and outside the limits of the string, so it is not 
necessary to consider infinite extent mathematically defined waves. In a traveling wave 
or ray tracing view with a D’Alembert type solution, the reflections would have to be 
done specifically at each end of the string. Both approaches have to take into account the 
physics and boundary conditions but offer different views of the solution. The modal 
view for the string is relatively easy to modify for other boundary conditions. For 
example, a string fixed at one end and free at the other corresponds to taking the traveling 
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or modal views for the string with both ends fixed and cutting it in the middle, at 0=x  
(just redraw Figure 4 with the limits at 0=x  and 2/Lx ±= ), where the boundary 
condition for the phase argument of the cosine term at a free end is ,  nnφ π= ∀ . 
Reflections from the free end are not inverted, and the maximum amplitude at the free 
end is double the maximum amplitude of the wave. 

We also see in Figures 4(A)-i and (A)-ii that moving, or shifting, the delta 
function in space (or time) is the same as a phase shift along the space (or time) axis of 
the ( )cos n ntω φ+  terms of the Fourier transform integrand (step 0 in Figure 2). Moving 
the delta function to δxx = , each frequency component in the Fourier transform 
integrand moves the same “distance” in space (or time), but a different “distance” in  
phase of the argument, i.e. a different number of wavelengths. This is a graphical view of 
the Fourier shift theorem  

( )( ) ( ) ( )( )xfFekFexxfF ikxikx      δδ
δ

−− ==− .  (5.3) 

Shifting a wave in space (or time), therefore, does not change its shape or affect the 
weights of the Fourier components, it only changes the phase spectrum of the 
components linearly with frequency through the δikxe−  term. This is the frequency-
domain expression of translational invariance in the time- and distance-domains. There is 
also a breakdown in the symmetry between the forward and inverse Fourier transforms 
here as the phase shift for both the forward and inverse Fourier Transform is always 
parallel to the real axis (step 0 in Figure 2). There is no equivalent to translational 
invariance in the frequency-domain, where the origin is unique. 

Dispersion: Next consider the case of a traveling wave in a medium in which the 
velocity of wave propagation is a function of frequency, i.e. a wave traveling in a 
dispersive medium. If each frequency component propagates at its own velocity, ( )kv f  
(or ( )v k ), two things happen as the wave propagates for some time t . First, as before, 
the position of the wave moves to a new location. Second, and more interestingly, is that 
the shape of the wave changes. This does not correspond to a D’Alembert type solution. 
The FTIV image can be used to illustrate several aspects of the evolution of the wave 
shape as a function of time, and the development of this method, applied to seismic 
surface wave analysis, was first presented in Brune, et al. (1960) and Nafe and Brune 
(1960). We will now examine this case, focusing on the relationship between the Fourier 
transform space and real-space shapes, illustrated in Figure 5, in more detail. Detailed 
mathematical presentations and insights into the physics can be found in Brune et al. 
(1960) and Nafe and Brune (1960) and in most intermediate and advanced seismology 
textbooks (Båth, 1968; Achenback, 1973; Udías, 1999; Aki and Richards; 2002; Pujol, 
2003). 

Starting as a delta function shown in Figures 3(A) and (B), after some time 1t , the 
individual harmonic waves will each travel at their own velocity some distance,  
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( ) 1x v k t= ,         (5.4) 

producing the FTIV image and real-space plots, shown in Figures 5(A) and (B). The 
frequency and real-space domains are now related by 

( ) ( )( ), cosu x t kx k t dkω
∞

−∞
= −∫  (5.5) 

(Brune et al., 1960, Nafe and Brune, 1960) where 

( ) ( )k kv kω = .       (5.6) 

The vertical line of constant phase (of the argument) originally at 0x = and 0 0t =  in 
Figure 3(A) gets sheared into a new shape at 1t  shown by the cyan line in Figure 5(A) 
(step 0 in Figure 2). By rescaling the x  axis in Figure 5(A) by 11 t , the axis can be 
changed to units of velocity, and we can use the same figure to plot velocity as a function 
of frequency and a velocity axis is drawn across the top of Figure 5(A). The cyan line is, 
therefore, also a plot the of the velocity at which the waves in the FTIV field move as a 
function of frequency, ( )v k . The velocity distribution used here was constructed to be 
differentiable and produce dispersion similar to that for surface waves in the earth, where 
the longer wavelength, lower frequency waves propagate faster. In this example, the 
velocity distribution has constant velocity segments for the lowest and highest 
frequencies, traveling at speeds 1v  and 2v , respectively, and varies smoothly and 
monotonically between them. As time increases, part of the vertical skirt at 0=x  and 

00 =t  becomes sloping, and we find a new collection of points, ( ),x k , in the FTIV 
image shown by the magenta line where the initially sloping skirts deform such that they 
now have a fold at which point they go through vertical. 

We will now examine the development of the real-space wavefield in Figure 5(B) 
from the initial shape. Compared to the delta function, the traveling wavefield has some 
wider, more complicated shape that is confined approximately to the region 

3 1 1 1v t x v t< < . Note that the x  axis in Figures 5(A) and (B) is shifted, or panned, to 
follow the center of the dispersing wave-train. The observed width of the wavefield is 
wider than what one would expect if the width was based on the fast and slow limits of 
the velocity distribution, 2 1 1 1v t x v t< < . From where does this low velocity limit, 3v , 
which is not a physical velocity of the medium, arise? The answer can be illustrated 
through analysis of the skirt pattern. 

To assist in the discussion of the details of the dispersed wave-train, we will 
divide both axes of the plot of the ( ),x k  space into a number of regions. The divisions 
along the frequency axis are indicated by the horizontal lines α through δ in Figure 5(A) 
and divide the magenta curve, which we will discuss shortly, into five branches labeled I 
through V. Using the lines 1v , 2v , and 3v  of the velocity axis of Figure 5(A) for 
reference, the real-space axis can also be divided into the region to the left of 1v , where 
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the skirts all slope to the left, a narrow region about 1v ; the region between the lines for 1v  
and 2v , where the skirts are folded over a single time; a narrow region about 2v , a region 
between 2v  and 3v , where the skirts are folded over twice with the folds facing opposite 
directions; a narrow region about 3v , where the slope of the skirts goes through vertical 
without a fold; and finally a region to the right of 3v  where the skirts all slope to the 
right. We will call the regions V1L, V11, V12, V22, V23, V33, and V3R respectively. 

Returning to the FTIV image of the dispersed wave in Figure 5(A), we observe 
that in regions V1L and V3R the skirts, or lines of constant phase (of the argument), are 
all sloping outward, similar to the skirts in Figure 3(A), and integration along vertical 
paths there will be zero. An example of this is shown by the oscillatory integrand and 
small running sum (integration) in Figure 5(C)-i. The wavefield at time 1t  will, therefore, 
not be found in regions V1L or V3R, outside the approximate limits V11 and V33. 

We will next look at the region V11, where the skirt pattern is vertical for 
0 k α< < , where all the Fourier components arrive traveling at a constant velocity, 1v , 
and then slopes for kα < . Remembering that regions of the integrand where the skirts 
slope do not contribute to the integral, we can limit our integrand to the range 0 k α< < . 
We might expect these waves to combine into a wave of some shape that also travels at 

1v  and we will see that this is the case. Consider the integration over a finite range of 
continuous frequencies, all traveling at the same velocity, 1v , 

( ) ( )0

0

, cos
k k

k k
u x t kx t dk

δ

δ
ω

+

−
= −∫ , (5.7) 

where ( )txu ,  is the wavefield in the distance-domain. This integral looks very similar to 
Eq. (3.5) and evaluating it (Udías, 1999) gives 

( ) ( ) ( ) ( ) ( )0 0 0 0

sin
, cos sinc cos

X
u x t k x t X k x t

X
ω ω∝ − = − ,    ( )1X x v t kδ∝ − ,    (5.8) 

which is the product of a carrier, ( )0 0cos k x tω− , where 0 0 1k vω = , with a sinc 
modulation function. (We are again concentrating on the principal properties of the 
solution and are continuing to ignore the scaling – see the texts referred to earlier for full 
solutions). The carrier is simply a traveling sinusoid with wavenumber 0k , and frequency 

0ω . In the argument of the sinc function, the ( )1x v t−  term shifts the location of the sinc 
function by 1v t , while the kδ  term controls the width. The relationship between kδ  and 

0k  determines the shape of ( )txu , . For 0k  small (long wavelength) and kδ  “large” the 
sinc function is narrower than the wavelength of the traveling sinusoidal wave, and the 
resulting shape looks like a sinc pulse, as can be seen in the leading wiggle of the 
wavefield near 5.7−≈x  and labeled ii, in Figure 5(B). For 0k  large (short wavelength) 
and kδ  “small” the sinc function is wider than the wavelength of the traveling sinusoidal 
wave and the resulting wave shape looks like a sinc modulated sinusoidal wave group or 
packet. This can be seen in region V22 where the skirt pattern is also vertical in the high 
frequency range, maxk kδ < < , and all the Fourier components travel at a 
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constant velocity, 2v . Here we find a sinc modulated wave packet of high frequency 
sinusoidal waves at location iv, near 5.3≈x , in Figure 5(B). In regions V11 and V22 the 
sinc modulation envelopes move at the same velocity as the component waves (parts I 
and V of the velocity plot). In Figures 5(C)-ii and (C)-iv the integrand and the running 
sums (integrations) are plotted, and we can see that the contributions to the real-space 
wavefield come from the regions in gray, where the velocity, integrand and integrand 
phase are all constant. In both V11 and V22, the sinc modulation restricts the resulting 
real-space wavefield to a pulse or wave packet over a finite region of space moving at 1v  
or 2v  respectively, and we can see that this region contains the energy or information 
carried by the wave. In this case, the real-space wave packet or pulse travels at the same 
velocity as the component waves in the FTIV image (cyan curve). We will see shortly, 
that this is not always the case, and we will need to distinguish between two velocities. 

We will now look at regions V12 and V23 where the skirts have one or two 
individual folds. In this region, we find that the wiggles in the wavefield do not travel at 
the velocity shown by the cyan curve but travel at a velocity defined by sections II-IV of 
the magenta curve in Figure 5(A). We will now introduce the term group velocity for the 
velocity at which waves travel in the real-space with their energy and information 
(magenta curve) and the term phase velocity for the velocity of the individual component 
waves and the velocity at which they travel in the FTIV field (cyan curve). Note that a 
single frequency wave would travel at the phase velocity. We will now investigate these 
velocities, especially the group velocity, more thoroughly. 

Before discussing Figure 5 in more detail, we will first examine the basic ideas of 
phase and group velocity by looking at the simplest case in which the two velocities are 
different; the superposition of two sinusoidal waves at slightly different frequencies or 
wavelengths, traveling at slightly different phase velocities. For a smoothly varying 
velocity, start with a reference wave traveling at some wavenumber k  and velocity ( )v k  
and construct two new waves at wavenumbers 

( )k kδ± ,         (5.9) 

traveling at velocities  

( ) ( ) ( )dv k
v k k v k k

dk
δ δ± = ± ,         (5.10) 

with frequencies  

( )( )v k k k kω δω δ δ± = ± ± ,          (5.11) 

under the condition that  

,k kδ δω ω<< << .       (5.12) 
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Combining these two waves we obtain 

( ) ( )( ) ( ) ( )( )cos cosF A k k x t A k k x tδ ω δω δ ω δω= + − + + − − − ,      (5.13) 

which, as before, can be rewritten as 

( ) ( )2 cos cosF A kx t k x tω δ δω= − − .      (5.14) 

This could be broken down further into functions of ( )kx , ( )tω , ( )k xδ  and ( )tδω  but 
doing so does not provide additional physical insight. In the real-space domain this is the 
product of two traveling waves, one traveling at a velocity  

( ) ( )k
v k

k
ω

= ,              (5.15) 

and the other traveling at a velocity, 

( ) ( ) ( ) ( )k dv k
v k k U k

k dk
δω
δ

= + = .        (5.16) 

We recognize the first velocity, Eq. (5.15), as the phase velocity of the reference wave. 
The second velocity is new and does not correspond to the velocities of the waves used in 
the superposition, but to the velocity of the second traveling wave factor in Eq. (5.14), 
and this velocity is called the group velocity. If all the waves travel at the same phase 
velocity, ( ) 0dv k dk = , and ( ) ( )U k v k= , there is no need to distinguish between phase 
and group velocities, or carry around the k  dependence, although using the term group 
velocity ensures we are talking about the velocity of energy propagation. 

The standard presentation of the relationship between the phase and group 
velocity is shown in Figure 6(A), while a 3D surface view is shown in Figure 6(B). In 
this simple case, one can determine the phase velocity by measuring the wave at two or 
more positions and finding the velocity at which the wiggles travel (the slanted dashed 
red line in Figure 6(A) follows the crest of a wiggle). One has to be careful to not “skip” 
wiggles, by an integer number of wavelengths, which can easily happen if the 
measurement points are too far apart as the wiggles are indistinguishable. The group 
velocity, shown by the slanting green line in Figure 6(A), is determined by measuring the 
wave envelope at two or more positions to find the velocity of the envelope. This may be 
difficult as the envelope is not well defined when there are a small number of wiggles in 
the envelope. Determining group velocity also suffers from the wiggle skipping problem, 
as the groups are also indistinguishable, but with respect to the envelope which skips in 
steps of half its wavelength. If one sits on the “envelope” of a group of waves, one travels 
at the group velocity and the wave crests run by underneath at the phase velocity (the 
waves in the group can run forward, backward or, if Uv = , be stationary). 

As we saw above, energy is carried by the wave at the group velocity as this is the 
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velocity at which the waves arrive, or are observed, in the real-space. This is not obvious 
with the infinite extent waves in Figure 6, but one can get an idea of how this works if 
one surfs a crest of the waveform (the one on the left marked in red in Figure 6(B) for 
example). One moves at the phase velocity, but the wave “runs out” in the trough and 
you get dumped in the water and have to wait for another crest from behind to surf 
forward again (the crest on the right in Figure 6(B) marked in red for example). This new 
crest also runs out when it arrives at the trough, and you have to catch a later crest again. 
You are basically limited to catching the crests in one modulation package of the 
envelope. Your long term average forward speed, therefore, is the speed at which the 
envelope travels, which is the group velocity. This analogy does not work when the phase 
velocity is less than the group velocity. In this case, energy still travels at the group 
velocity, which can be seen if the surfboard is long enough that it is surfing the envelope, 
rather than the individual wave crests, and again moves forward at the group velocity. As 
in the case of the traveling-standing wave combination, there are many animations on the 
web of this effect.  

We can now apply these ideas to the dispersing wave-train in Figure 5, which 
illustrates graphically the observation that phase velocity is an easy concept to 
understand, but a hard quantity to measure as nothing is physically traveling at the phase 
velocity, and that group velocity is a hard concept to understand, but an easy quantity to 
measure, as this is the velocity at which the physical wavefield travels. If one jumps on a 
crest of the real-space wave, one finds the crest to have some wavelength and be 
traveling at some velocity. As one rides along with that crest, however, both the 
wavelength and the velocity change with time. Both changes are directly related to the 
evolution of the fold in the skirt pattern in FTIV space with time. We will see that at any 
time, riding on the crest of the wave at x , with wavenumber k , in real-space is 
equivalent to riding at the same position, x , on the crest of the Fourier component that 
has the same frequency in FTIV space. As time progresses, however, the skirt changes 
shape and moves through FTIV space sampling other frequencies and phase velocities. If 
one wants to follow an individual crest in the real-space domain, one has to change 
frequencies and, therefore, velocities, in FTIV space by following the magenta group 
velocity curve in Figure 5(A). The distinction between the phase and group velocities is 
clear in the FTIV space as is the relationship of the evolution of the skirt pattern in FTIV 
space to the velocity and shape of the waves in the real-space. 

To illuminate the relationship between the patterns seen in the FTIV space and 
the shape of the real-space function we will now return to the discussion of the principle 
of stationary phase. In its general form, the principle of stationary phase, first outlined by 
Cauchy (Erdelyi, 1955) and fully developed by Stokes and Kelvin (Båth, 1968), 
considers integrands which are the product of two functions, a slowly varying function, 

( ) kϕ , and an oscillatory function, ( )xkie ,Ψ , 

( ) ( ) ( ),b i k x

a
f x k e dkϕ Ψ= ∫  (5.17) 
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(Båth, 1968). In addition to providing insight into the propagation of dispersed waves, the 
principle of stationary phase provided an important trick that facilitated evaluation of the 
inverse Fourier transform when “computers” were people. These two points were 
actually the motivation for its development, although it can also be derived by modern 
analysis techniques. By using the delta function in the real-space domain, we only have 
to consider the oscillatory term, ( )xkie , Ψ , since ( ) ( ) 1   == δϕ Fk . This greatly simplifies 
the discussion of stationary phase without losing the insight. 

We will now apply our earlier observation in Figure 3(C), that the only non-zero 
contributions to the inverse Fourier integration come from regions where the phase of the 
argument of the integrand is a constant, or equivalently its derivative is zero. We have to 
remember that while individual contour lines of the image in Figure 5(A) have constant 
values of the function  

( ) ( )( ), cosF k x k x k tω= −         (5.18) 

they are not contours of the argument  

( )( )kx k tω−         (5.19) 

directly, but they can be interpreted as lines of constant phase of the argument when the 
Fourier weights are constant. On any single contour line we will consider 

( ), constantf k x = , or 
( ),

0
x

f k x
dk

∂
=  (5.20) 

to be equivalent to 

( ) ( )( ), constantk x kx k tωΨ = − = , or 
( ),

0
x

k x
k

∂Ψ
=

∂
, and 

( ) ( )
x

d kx U k
t dk

ω
= = ,       (6) 

which says the contribution to the wavefield from the Fourier component k  arrives at x  
at the group velocity, ( )kU  .  

In region V12, after the large initial arrival, we find an extended train of 
sinusoidal waves whose wavelength (this is a wavefield snapshot) slowly decreases. 
Looking at the integrand and running sum in Figure 5(C)-iii we can see that the major 
contribution to the wavefield in region V12 comes from the small region, indicated by the 
gray background, which comes from the area around the fold in the skirt pattern in the 
FTIV image in Figure 5(A), where the slope is vertical or the phase of the argument in 
the inverse Fourier transform integrand is stationary. A frequency, k , that has a 
stationary phase, i.e. a vertical skirt in Figure 5(A), defines a single point ( )0 0,x k  in the 
FTIV space. The magenta line in Figure 5(A) connects the points ( ),x k  in the FTIV that 
have stationary phase and defines the group velocity, the velocity at which the observed 
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waves of each wavelength, and the energy associated with them, travels. In region V12, 
one branch of stationary phase is found at long wavelengths and produces a wavefield of 
sinusoidal wiggles at a slowly varying instantaneous frequency. In region V23, we find 
two branches of stationary phase: one along a continuation of the magenta curve from 
region V12, and a separate one at shorter wavelengths. By superposition, we add the 
results from each branch of stationary phase individually as shown in Figure 5(C)-v, 
where we again see that the non-zero contributions to the final value at that position 
comes from the two branches of stationary phase, shown in gray. If we divide the 
frequency axis between α  and δ  into two parts about the frequency where the group 
velocity turns around ( 110≈kf ) and integrate each part individually, the real-space 
dispersed wave-train from the low frequency part has increasingly shorter wavelengths as 
one goes from 31   to vv . This effect is clearly seen in region V12, and is called normal 
dispersion. The sum for the higher frequency part has increasingly shorter wavelengths as 
one goes from 23  back to vv  and this is called anomalous dispersion. In region V23, the 
two patterns are superimposed, making them hard to see individually. We also note here 
that in order to use the principle of stationary phase, which is an approximation, we have 
to let the wave propagate for sufficient time such that the integrand is highly oscillatory 
over all its range (skirts are sufficiently sheared) except for the immediate region of the 
stationary phase. This is typically true for travel times that are much greater than the 
periods of the frequency components about the point of stationary phase (Pujol, 2003). 

Performing the inverse Fourier transform in regions V12 and V23 requires 
evaluating Eq. (5.5). This integral cannot, in general, be evaluated in closed form due to 
the ( )kω  term. While the details of the mathematics in this next section can get quite 
complicated, the basic method is straightforward. We have seen that only a small region 
of the range of integration about the point of stationary phase contributes to the value of 
the integration. We will, therefore, concentrate on evaluating the integral in that region 
and the final result will turn out to be relatively simple. For well behaved integrands, the 
integral in the region of interest can be approximated using a Taylor series expansion of 
the argument to the integrand about a point of stationary phase, ( )00 , xk , to find ( )txu , 0 . 
From Eq. (6) we saw that the contribution to the wavefield from the Fourier component 

0k  arrives at 0x  at the group velocity, ( )0 kU . Keeping the lowest non-zero term of the 
Taylor series expansion of ( ),k xΨ  about the point of stationary phase, where 0ω′ = , 
and using the prime to represent d dk  

( ) ( )( ) ( )( )2
0 0 0 0 0 0 0, 1 2k x k x k k k tω ω′′Ψ ≈ − + −   (6.1) 

Plugging this into Eq. (5.5), using the exponential form Eq. (5.17) to make the integration 
easier (we will take the real part at the end), using Eq. (6), noting that the integral outside 
the neighborhood of 0k  is null so the limits can be expanded to ∞± , doing a little 
algebra, and again ignoring scaling constants our approximation becomes 
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( ) ( ) ( ) ( )( )( )2
0 00 0 0

2

0 , e e
i t U k k ki k x tu x t dkω ∞ ′− −−

−∞
∝ ∫ ,   (6.2) 

which shows that ( )txu ,0  will be a traveling sinusoidal wave, represented by the  

( )0 0 0ei k x tω−        (6.3) 

term, multiplied by whatever the integral comes out to be. To evaluate the integral, 
substitute 

 ( ) ( )( )22
0 02t U k k k′Ω = − ,  ( ) ( )( )0 02d t U k k k dk′Ω Ω = − ,        (6.4) 

to obtain 

( ) ( ) ( )( ) 20 0 0 1 2
0 0, i k x t iu x t e U k e dω

−∞

∞−− − Ω′∝ Ω∫ ,        (6.5) 

which is a form of the Fresnel integral. This can be evaluated using contour integration 
(Båth, 1968) 

( ) ( )( )2
04 sgni U kie d e π∞ ′− Ω

−∞
Ω ∝∫ ,     (6.6) 

to provide a simple result - a complex valued constant that changes the amplitude, which 
we are ignoring, and the phase, upon which we are concentrating, of ( )txu ,0 . Plugging 
this into Eq. (6.2) and taking the real part 

( ) ( )( ) ( )( )1
2

0 0 0 0 0 0, cos sgn4u x t U k k x t U kπω
−

′ ′∝ − + ,    (6.7) 

we find the wavefield to be a sinusoidal traveling wave of instantaneous frequency, 
0kf , 

moving at the phase velocity,  

0

0

v
k
ω

= ,            (6.8) 

that arrives at 0x  at the group velocity,  

0

a

xU
k t

δω
δ

= = ,           (6.9) 

where at  is the arrival time. The instantaneous frequency at 0x  is the same as the 
frequency at which the phase of the argument is stationary, but the wavefield has a 4π±   
phase shift with respect to the sinusoidal Fourier transform integrand component. This 
phase shift, which is a subtle effect, can be seen by comparing the position where the 
bright part of the skirt in the Fourier transform integral is vertical with the position of the 
crest of the dispersed wavetrain (difference shown by the short sideways “T” on the 
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reference line iii in Figures 5(A) and (B)). The sign of the phase shift is determined by 
the sign of the second derivative, or graphically, the direction the fold in the FTIV space 
is facing. We have kept the subscript on x  because the 0k , where the phase of the 
argument is stationary, determines 0x  (and 0ω ). We have also kept one amplitude scaling 
term, as it will contribute to the following discussion. When we evaluated the integrals in 
Eq. (3.5) and Eq. (5.7), it was not essential to examine the phase of the argument of the 
Fourier transform integrand. Doing so, however, prepared the background for evaluating 
Eq. (5.5), where the effect of the spectral phase shift in the frequency-domain on the 
phase argument of the Fourier transform integrand is what determines the wavefield 
shape and velocity in the distance-domain. 

This leaves region V33, which is an inflection point where the second derivative 
of the phase of the argument is also zero, as indicated by the skirts going vertical but not 
forming a closed fold. Even though the argument phase is stationary here, we cannot use 
the method of stationary phase as presented above to estimate ( )txu ,  because the term 

( ) ( )0 0k U kω′′ ′=  in the denominator in Eq. (6.7) is now zero. We will find that there will 
be a larger constructive interference effect here as the group velocity is now also 
constant. Here again, while the details are complicated, the procedure is straightforward, 
and the result will be simple. The usual solution to estimate the waveform here is to carry 
the Taylor series approximation of Eq. (6.1) one derivative further to  

( ) ( )0 0 0k U kω′′′ ′′= ≠ .       (6.10) 

Temporarily relaxing the stationary phase requirement that ( )0 0kω′ =  allowing us to 
keep the first derivative term, and keeping the third derivative term, following Savage 
(1969), we have 

( ) ( ) ( )( ) ( ) ( ) 31
60 0 0 0 0 0 0 0 0 0 ,       k x k x t k k x k t k k k tω ω ω′ ′′′Ψ ≈ − + − − + −           (6.11) 

and 

( ) ( ) ( ) ( )( ) ( ) ( )( ) 31
0 0 0 0 060 0 0

      

0 ,
k k x k t k k k ti k x tu x t e e dk

ω ωω ∞ ′ ′′′− − + −−

−∞
∝ ∫ ,  (6.12) 

a traveling wave multiplied by the result of the integral, similar to Eq. (6.2). To evaluate 
the integral make the substitutions 

( )( ) ( )
1

31
2 0 0k t k kω′′′Ω = − , and 

( )( )
1

31
2 0

d dk
k tω

Ω
=

′′′
      (6.13) 

and remembering Uω′ =  we obtain 

( ) ( ) ( ) ( )311
30 0 0 3

0 0, i bi k x tu x t e U k e dω ∞ Ω− Ω−−

−∞
′′∝ Ω∫           (6.14) 
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with ( )( ) ( )( )1
20 0 0b x k t k tω ω′ ′′′= − . (6.15) 

The integral in Eq. (6.14) is known as the Airy integral (Airy, 1838), and it produces the 
Airy function, Ai , which can also be used to model Rayleigh wave dispersion (Savage, 
1969). When not at an inflection point the solution is of the form 

( ) ( ) ( ) ( )( )( )1
0 0 0 3

0 0 0 0, argumenti k x tu x t e U k Ai x k tω ω−− ′′ ′∝ ∝ − . (6.16) 

As we found before, this is a traveling wave of instantaneous frequency, 
0kf , moving at 

the phase velocity, 0 0v kω= , that arrives at 0x  at the group velocity, 
0 aU k x tδω δ= = , where at  is the arrival time, modulated by the Airy function. At an 

inflection point, which is our case, we reapply the condition for stationary phase. This 
gives 0=b  in Eq. (6.15), and the value of the Airy function reduces to a number (not a 
traveling wave term) and 

( ) ( ) ( )
1

0 0 0 3

0 0, i k x tu x t e U kω −− ′′= ,           (6.17) 

which again is a traveling wave of instantaneous frequency, 
0kf , moving at the phase 

velocity, 0 0v kω= , that arrives at 0x  at the group velocity, 0 aU k x tδω δ= = , where 
at  is the arrival time. In this case, the wavefield is in phase with the corresponding 

component in the FTIV space, as one might expect as the folding of the skirts is not 
closed and the region that interferes constructively is more symmetric. As in Eq. (6.7) we 
have kept one scaling term, and comparing it and Eq. (6.17), we see that the latter 
decreases more slowly than the former. The stronger constructive interference, due to 
both the phase and group velocities being constant, produces a slower decrease in 
amplitude to make the wavefield at the x  value associated with the inflection point 
relatively large, as can be seen in Figure 5(B). This large pulse in the wavefield is called 
the Airy phase, and it is associated with an extremum, in this case the minimum, of the 
group velocity at which point the wavefield effectively turns off. 

Figure 7 shows the time evolution of the wavefield, which turns out to be 
relatively simple when viewed this way. The origin of the x axis tracks the center of the 
wavefield, so it represents a point that is moving through space at a “reducing velocity” 
of  

2
31 vvvr

+
= .          (6.18) 

We observe two sinc modulated groups (pulses) traveling at 21  and vv  respectively and 
the Airy phase pulse at the back traveling at 3v  at which point the wavefield shuts down. 
Parts a, b, and c in Figure 7 each look along a line following one of the three fundamental 
velocities ( 1v , 2v  and 3v , respectively) of the dispersion relationship. New wiggles in the 
wavefield arise out of the Airy phase traveling at 3v  at the back (right) side and travel 
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within the dispersed wave-train at a changing group velocity and instantaneous frequency 
to the left, sub-parallel to their limiting velocities, 1v  for the low frequency component, 
and 2v  for the high frequency component. Each wiggle is permanent; the wiggles do not 
coalesce once they arise. The wiggles from the lower and higher freq branches in V23 
can be seen individually in the views a, b, where they are subparallel to 2v , and c where 
the interfering wiggles modulate the wavefield. 

The dispersion curve was constructed to illustrate several different aspects of 
dispersed wavefield development in the earth, but is not a realistic earth dispersion curve. 
The low frequency branch V12 and V23 has a large change in group velocity over a 
small frequency range, producing a long train of sinusoidal wiggles in the wavefield 
similar to the case of oceanic Rayleigh wave dispersion. As time goes on in Figure 7(A), 
the folds along V12, V23 and V32 get tighter and narrower and move to lower frequency. 
Additionally, as the distance between the leading and trailing edges of the wavefield, 
traveling at 1v  and 3v  gets larger (longer) more “wiggles” have to fill this region. New 
wiggles arise as additional folds are created on the low and high frequency limits, 

γβ  and , at V33, and each wiggle is composed of a narrow range of component waves 
and delayed by a cycle, π2  in argument phase, with respect to the wiggle in front of it. 
The flat “bucket” in the group velocity at 3v , between β  and γ , makes a strong Airy 
phase beyond which the wavefield quickly shuts off, similar to the Airy phase of 
continental Rayleigh waves. We can clearly see that while motion of the waves in the 
FTIV field move at the phase velocity, this velocity has little or no physical significance 
in the real-space (distance-domain). Similarly, while we do not see the component waves 
moving at the group velocity in the FTIV field, we do see structure there. This structure, 
associated with the velocity of the modulating envelopes or the instantaneous frequency, 
produces the group velocity, which is the velocity energy and/or mass is transported in 
the real-space domain. 

In the case of analyzing dispersed surface waves from a real earthquake, we have 
to consider the actual source, which will not in general be a delta function. For the 
analysis of teleseismic surface waves, the main consideration will be the specification of 
an initial phase spectrum at the source as the amplitude spectrum is uniform (Brune, 
1970). In addition, when calculating synthetic seismograms for comparison to 
seismograms recorded at teleseismic distances, since phase measured from the 
seismograms can only be determined to ( )π2mod , one has to find the total distance by 
including the number of whole cycles between the source and receiver that are lost due to 
the ( )π2mod  (Brune et al., 1960). This is the same as the “integer ambiguity” problem 
when using GPS phase measurements to determine position. 

So far we have considered surface waves from only the traveling wave standpoint. 
As we saw earlier, by combining the wavefields of dispersing surface waves traveling in 
opposite directions, we obtain a modal or standing wave view. As the wavelengths of 
surface waves approach the size of the earth, and the waves have to “fit” around the earth 
this becomes the natural view. We will not present an image of this combination, but the 
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results in the FTIV space will be similar to those for the two delta functions in Figure 4, 
and the two dispersing wavetrains will not affect one another in the real-space domain. 
While it is easy to visualize changing the linear string to a circle, the modal view on a 
sphere requires changing the basis functions to spherical harmonics. 

Discussion 

We have seen that the phase spectrum, i.e. how the phase shifts in the frequency-
domain vary as a function of frequency, can have a large effect on the real-space, time or 
distance-domain, shape of the function. How does this compare to the effects of changing 
the amplitude spectrum, or how the weights vary as a function of frequency? In general it 
is difficult to visually interpret plots of time-domain signals and the effect filtering 
(which in general changes both amplitude and phase) has on them in terms of the 
information, etc. the signal carries. It is instructive, and easy to do using tools such as 
Matlab® for example, to record and play back a voice recording to investigate the effects 
of varying either the amplitude or phase spectra on the playback. If the amplitude 
spectrum is randomized or made uniform, the playback is easily recognizable and 
understandable, but noisy. If the phase spectrum is randomized, however, the playback is 
a white noise and completely unintelligible. If the phase spectrum of a voice recording is 
modified smoothly and nonlinearly, a linear variation just moves the playback in time as 
per the shift theorem, the length of the playback will usually change with respect to the 
length of the recording. This change in length is not due to just a slowing down or 
speeding up of the playback, as would happen if one varied the speed of a tape recorder 
on playback. The change in length is due to the nonlinear phase shift, the same as was the 
case in the dispersing wave discussed earlier. For small amounts of dispersion, this 
causes interesting effects in the playback, but for sufficient dispersion, the playback 
becomes unintelligible. 

Previously we saw that the delta function was composed of all frequencies with 
the same weight with their phases equal to zero at the location of the delta function and 
that we could generate a dispersed seismogram from the delta function by a specific 
variation of the phase spectrum. The same amplitude spectrum, all weights equal, but 
with the phases randomized results in white noise. Similarly, amplitude spectra with 
weights proportional to 2f − , 1f − , 1f  and 2f  with random phase spectra produce red or 
brown noise, pink noise, blue and violet noise, respectively. Using these spectra rather 
than uniform weights, with ( ) 0φ ω =  at 0t = , as the initial frequency-domain 
specification would have produced similar dispersed seismograms as the dispersion 
example illustrated, but with either the high or low frequencies accentuated. For the case 
of the boxcar, which has ( ) 0φ ω = , it is the amplitude spectrum that defines the basic 
shape. If the boxcar travels in a dispersive medium, it initially disperses into a wider, 
complicated shape whose evolution cannot be described easily. For travel times much, 
much greater than the width of the boxcar, the dispersed boxcar looks similar to a 
modulated version of the dispersed delta.  
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The delta function, white noise, and the dispersed wavetrains discussed above all 
have the same amplitude spectrum, but very different real-space functions, and the real-
space functions in this case are determined by the phase spectrum. When processing 
seismograms, it is important to clearly understand where, i.e. in which domain – time or 
frequency – the information lies. If one is studying surface waves, the information is in 
the phase, which is in the frequency-domain. In this case, one has to be careful to insure 
the observed phases are caused by the earthquake and transmission through the earth and 
not the processing. Conversely, if one is measuring arrival times of body wave phases, 
the information is in the time-domain. One now has to insure that the processing does not 
change when the phases arrive (start).  In this case, any frequency-domain processing has 
to modify the frequency-domain phase such that it does not cause the seismic phase 
arrival in the time-domain to become acuasal (which is what happens in the simple case 
of the band limited delta function in Eq. 3.5; the center of the sinc function is at the same 
time as the original delta function, but the wiggles “start” earlier and continue later). 
Frequency dependent attenuation, which is a filter, therefore, requires dispersion to 
maintain causality. 

Conclusion 

We have seen that viewing the Fourier transform integrand as a topographic 
surface can provide insight into a number of features of wavefields in the real-space 
domain. For many types of observation, the phase spectrum carries the information about 
both the source of the waves and the path over which they travel. Understanding the 
effect of the phase spectrum on the real-space function can be key to recovering this 
information. The FTIV presentation provides insight into the often underappreciated 
contribution of the phase spectrum to the shape of the real-space function, of how to 
make traveling waves from standing waves, of the traveling wave versus modal models 
of generating waves, and the behavior of dispersing wavefields. It also illustrates the 
symmetry between the forward and inverse Fourier transform. 

Acknowledgements 

I thank C. Langston, J. Pujol, M. Bevis, and SRL editor L. Astiz for helpful reviews. 

References 

Airy, G. B. On the intensity of light in the neighborhood of a caustic. Trans. Cambridge 
Phil. Soc., 6:379–403, 1838. 

Achenback, J.D., Wave Propagation in Elastic Solids, North Holland, NY, 424pp, 1973. 

Båth, M., Mathematical Aspects of Seismology, Developments in Solid Earth 
Geophysics, 4, Elsevier, NY, 415 pp, 1968. 

Brune, J.N., J.E. Nafe, and J.E. Oliver, A Simplified Method for the Analysis and 
Synthesis of Dispersed Wave Trains, J. Geophys. Res., 65, 1, 287-304, 1960. 



Electronic Supplement to  
Student Guide: Making Waves by Visualizing Fourier Transformation  by Robert Smalley, Jr. 
EduQuakes column from Seismological Research Letters Volume 80, Number 4 July/August 2009 

28 

Brune, J., Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. 
Geophys. Res., 75(26), 4997-5009, 1970. 

Erdelyi, A., Asymptotic Representations of Fourier Integrals and the Method of 
Stationary Phase, J. Soc. Indust. Appl. Math., 3, 1, 17-27, 1955. 

Gubbins, D., Time Series Analysis and Inverse Theory for Geophysicists, Cambridge 
University Press, Cambridge, 255 pp, 2004. 

Nafe, J.E., J.N. Brune, Observations of phase velocity for Rayleigh waves in the period 
range 100 to 400 seconds, Bull. Seis. Soc. Am., 50, 3, 427-439, 1960. 

Pujol, J., Elastic Wave Propagation and Generation in Seismology, Cambridge University 
Press, Cambridge, 444 pp, 2003. 

Savage, J.C., A New Method of Analyzing the Dispersion of Oceanic Rayleigh Waves, J. 
Geophys. Res., 74, 10, 2608-2617, 1969. 

Udías, A., Principles of Seismology, Cambridge University Press, Cambridge, 475 pp, 
1999.  



Electronic Supplement to  
Student Guide: Making Waves by Visualizing Fourier Transformation  by Robert Smalley, Jr. 
EduQuakes column from Seismological Research Letters Volume 80, Number 4 July/August 2009 

29 

 

Figure 1. (A) Plots of boxcar time-domain function (top part: black) and its 
approximations using the first 7 terms of its Fourier series (blue) and the first 100 terms 
(red). The DC (zeroth) term in the Fourier series, 0a , which is weighted differently than 
the other terms and provides a constant y offset in the time-domain, is not plotted in 
either (A) or (B) but is included in the sum. Plots of the first through sixth sinusoidal 
basis functions (bottom part: gray dashed lines) and the corresponding terms of the 
Fourier series after applying the frequency-domain weights (bottom part: black lines). 
Several sets of points where the argument to the sinusoidal term is a constant are shown 
by blue circles. The blue dashed line connects these points as one goes between the terms 
of the Fourier series. These curves become lines of constant phase of the argument for the 
continuous Fourier transform integrand. The circles are drawn on the axis for each basis 
function, not on the plot of the function. Note the overshoots at the sides of the boxcar. 
This is a “feature” of the finite Fourier series, known as the Gibbs phenomena, which we 
will not be able to remove. The time axis is in seconds and 1ω π=  radians/second. (B) 
Weights for the Fourier series terms (green circles) and the continuous Fourier transform 
amplitude spectrum (green dashed line). One of the main purposes of this tutorial is to 
use a graphical presentation to facilitate understanding the shape of the time-domain 
function in terms of the Fourier transform integrand. The figures will, therefore, be scaled 
for the graphics presentation, rather than following the scaling rules of the forward and 
inverse Fourier transforms. The continuous Fourier transform weights shown above have, 
therefore, been rescaled to match those of the Fourier series terms. The property of the 
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Fourier transform and Fourier series weights that is important here is the shape of the 
function in the frequency-domain, not the amplitude. 

 

 

 

 

Figure 2(A). 3-D view of the set of basis functions, ( )cos n mtω , which is common to the 
integrand of both the forward and inverse continuous Fourier transforms. The time axis 
(t, right side) is in units of seconds and ranges from -0.5 to 0.5 seconds. The frequency 
axis (f, front) is in units of Hz (cycles/time unit) and ranges from 0 to 10. The vertical 
axis (height) is the amplitude of the Fourier component at ( ),t ω . Color shows the value 
at each point ( ),t ω , while the lighting and shading help the brain visualize the surface. 
The solid black lines parallel to the time axis are the Fourier series components shown in 
Figure 1a. The blue lines along the crests show lines of constant phase to the argument of 
the sinusoidal basis functions. This figure shows the symmetry between the forward and 
inverse transforms, which is made much clearer by including the negative frequencies in 
the FTIV space images. 
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Figure 2(B). 3-D view of the integrand, ( )cosn n mc tω , of the continuous inverse Fourier 
transform for a boxcar. The dashed black lines parallel to the frequency axis (constant 
time) show the function that is summed to produce the value of the time-domain function 
at that time. The red curve at the right is the “continuous” inverse Fourier transform. The 
frequency-domain function is shown along the t-axis by the heavy red curve, which 
together with the light red curve shows the envelope obtained after multiplying the basis 
functions by ( )mF ω . Sums parallel to the f  axis produce the red curve, ( )ntu  , along the 
time axis. (Note: Both the time-domain function and the 3-D representation of the 
integrand are plotted normalized to their own maximum.) The frequency and time-
domain functions are shown along the f - and t -axis by the heavy magenta curves, 
which together with the light magenta curves show the modulation envelopes of parts a 
and b, when the basis functions are multiplied by them.  
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Figure 2(C). 3-D view of the integrand, ( ) ( ) cos  m n mu t tω , of the continuous forward 
Fourier transform for a boxcar. The illumination, various lines, axes, and scaling are as in 
Figure 2(A). The time-domain function is shown along the x-axis by the heavy magenta 
curve, which together with the light magenta curve shows the envelope obtained after 
multiplying the basis functions by ( )mtu  . Sums parallel to the t  axis produce the Fourier 
transform, ( )mF ω , shown by the magenta curve along the frequency axis. Note that we 
are now using both positive and negative frequencies in the frequency-domain and both t  
and ω  are discrete. 
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Figure 3. (A). Gray scale topographic FTIV of the inverse Fourier transform for the delta 
function (positive frequencies only). (B). The real-space function, calculated using the 
inverse Fourier transform is shown at bottom. The vertical view is similar to Figure 2a, 
but the “topography” is now encoded in gray, and there is no lighting or shading. (C). 
The plots on the right show the running sum of the inverse Fourier transform as a 
function of the upper frequency limit of the sum for time or position = 0 and time or 
position = 0.49 (grey lines). Note the very different amplitude scales on the plots of the 
running sum for the two positions. The horizontal axis on the bottom left is t  in seconds 
with 1 2ω π=  radians/second, or x  in meters and 1 2ω π=  radians/meter.  
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Figure 4. Combination of two traveling waves in parts (A) and (B) into standing waves in 
part (C). Top parts (i) show FTIV view, bottom parts (ii) show real-space function. The 
dashed lines in parts (A)-i and (B)-i show several lines of constant phase in the argument 
to the integrand. Constructive interference in parts (A) and (B) occurs only for the 
vertical dashed lines. The left hand side of c-i shows the full pattern produced using 
either the product or sum form of the combined waves in (A) and (B).  The right hand 
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side of (C)-i shows the two components of the product form, the fixed spatial delta 
function, ( )cos kx , shown between 0=x  and 0.1 and the cosine modulation term, 

( )cos tω , shown from 1.0=x  to 0.25. The time value for this snapshot is such that the 
two cosines match at 1.0=x  (under the vertical dashed line) and the vertical sum 
(integration over frequency) at that point is therefore non-zero. At all other places the 
integrand is the product of two cosines of different frequencies and the integral is zero. 
The lines of constant phase in the argument to the integrand from the traveling waves are 
also drawn in part (C)-i, where one can still see the “skirt” patterns in the left hand side, 
but the skirt patterns now have a modulation as one follows any vertical profile. (The 
light gray skirts on the left and right of parts (A)-I, (B)-I, and the left side of (C)-I are 
imaging artifacts of the gray scale.) 
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Figure 5. Figure illustrating dispersion, phase and group velocity, and the principle of 
stationary phase. Fourier integrand (A) and distance-domain (B) snapshots of a dispersed 
wave at time t . In the FTIV space (A) the frequency increases going down. The distance 
axis, shared between the FTIV space and real-space plots, is shown between the two and 
pans with the travelling wave such that the axis is approximately symmetric about the 
“center” of the dispersed wave. In (A) the phase and group velocities are shown by the 
cyan and magenta curves using the velocity axis across the top. Velocity increases to the 
left. Three velocities are marked and shown by the yellow dashed lines, the fast, 1v , and 
slow, 2v , limits of the phase velocity and the fast, 1v , and slow, 3v , limits of the group 
velocity. The four horizontal red lines, α−δ, in (A) define five branches, labeled I-V, for 
discussion of the group velocity and shape of the real-space wave-train. (C) Shows a 
selection of vertical profiles, i-vi, at different positions with plots of the FTIV function at 
that position, in black, and the cumulative integration, in red. The FTIV functions are all 
plotted on an unlabeled scale ranging from -1 to +1. The scale for each of the integrations 
is different and labeled on each plot. The gray regions show the regions of the integrand 
that contribute to the non-zero real-space waveform. In plots of the phase of the argument 
to the integrand (along the profiles i-vi for example) the regions of stationary phase are 
small and subtle and are not obvious. When the weights are equal, however, a plot of the 
integrand can serve as a proxy for a plot of the phase of its argument. Where the 
integrand looks like a single frequency harmonic wave the phase is linear (or 
approximately so). When the integrand looks like a harmonic wave with varying 
frequency, the phase is varying but not in a linear fashion. In both cases, these regions do 
not make non-zero contributions to the integral or sum. Finally in regions where the 
integrand is approximately constant (regions with gray background in i-vi), the phase of 
the argument to the integrand is stationary or nearly-so and significant contribution is 
made to the sum or integration. 
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Figure 6(A). Standard figure showing relationship, and difference, between phase 
velocity, v , and group velocity, U . The horizontal axis is distance, so we are looking at 
snapshots of the wavefield. At time t1, the individual component waves are also shown. 
Note that they are in phase at 0=x , and every maximum of the envelope, and out of 
phase at 25≈x , and every zero of the envelope. In this case, Uv >  and the wiggles 
move forward through the envelope. The red curve shows the carrier waves and the 
slanted red line labeled, v , shows the phase velocity. If one were to sit on a crest, one 
would move at this velocity. The group velocity at which the envelope moves is shown 
by the slanting green line. 
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Figure 6(B). Three dimensional view illustrating phase and group velocity as a function 
of ( )tx, . The carrier is drawn as an opaque surface and one side of the envelope, is drawn 
over the carrier as a transparent surface. Points of constant phase argument in the carrier 
(a crest for example, example shown in red at right) move at the phase velocity (red 
vector), v , through the modulating envelope, which moves at the group velocity 
(magenta vector), U .  
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Figure 7. Waterfall views of the time evolution of the dispersing wavefield with a 
reducing velocity ( )1 3 2rv v v= + . Wavefield features that slope to the left travel faster, 
and those that slope to the right travel slower, than the reducing velocity. The wavefield 
at, 1t , is plotted in black at the front and is the same as in Figure 5. As time increases, the 
wavefield and therefore the energy is spread over a larger distance, and the amplitude 
decreases. In order to see the evolution of the shape, each wavefield trace is therefore 
normalized by its maximum amplitude, which occurs in the Airy phase at the back. 


