Volcanic thunder from explosive eruptions at Bogoslof volcano, Alaska

Matthew Haney¹, Alexa Van Eaton², John Lyons¹, Rebecca Kramer², David Fee³, and Alex Iezzi³

¹ Alaska Volcano Observatory – U.S. Geological Survey
² Cascades Volcano Observatory – U.S. Geological Survey
³ Alaska Volcano Observatory – Geophysical Institute, University of Alaska Fairbanks
MOTIVATION AND OVERVIEW

- Volcano ash clouds pose hazard to aviation and can be detected by direct (e.g., satellite or webcam) or indirect (e.g., seismic or infrasound) measurements
- Volcanic lightning detection is a powerful new tool for this purpose

This talk:
1. Signature of lightning in ground-based geophysical data from 2016-17 eruption of Bogoslof volcano
2. Volcanic thunder
3. Cloud-to-ocean lightning strokes
4. Lightning-related glitches
VOLCANIC LIGHTNING AND DETECTION

- Three types of volcanic lightning
- Plume lightning most similar to normal lightning
- Global VLF networks, such as WWLLN and Vaisala, mostly sensitive to high altitude lightning

[Thomas et al., 2016]

[Behnke and McNutt, 2014]
Volcanic lightning has garnered considerable attention, but no documented reports of the related phenomenon of volcanic thunder.

Difficult to observe since erupting volcanoes generate a lot of sound due to ejection of mass at vent.

Thunder has been observed with sonic and infrasonic sensors during meteorological storms at ranges of up to 100 km.

Volcanic thunder, if observable, would contain additional information compared to lightning on electrification of volcanic plumes.

[Assink et al., 2008]

[Johnson et al., 2011]
Bogoslof

- Mostly submarine volcano in Bering Sea
- Sequence of over 70 explosive eruptions from December 2016 to August 2017
- Monitored by seismic stations on nearby islands in the Makushin and Okmok networks
- Infrasound array on Okmok at 60 km range
- Lightning locations from Vaisala and World Wide Lightning Location (WWLLN) catalogs
BOGOSLOF LIGHTNING LOCATIONS

- Combined WWLLN and Vaisala catalog from March 8 and June 10 eruptions
- Dominated by March 8 eruption, the most prolific lightning producer of entire eruption sequence

[Haney et al., 2018 GRL]
BEAMFORMING

- 30 second windows with 50% overlap, minimum correlation of 0.5

- Frequency band from 4-8 Hz
 - Tradeoff between high SNR at high frequencies vs. coherence

- When unique pairs of interstation times exist, slowness obtained using:
 \[\Delta t = G \tilde{s} \]
 \[\tilde{s} = (s_x, s_y) \]

- Slowness converted into backazimuth and trace velocity
 \[\theta = \tan^{-1}(s_x/s_y) \]
 \[v = \frac{1}{\sqrt{s_x^2 + s_y^2}} \]
JUNE 10 ERUPTION

- Destroyed first confirmed lava dome
- WWLLN and Vaisala lightning locations offset to NE due to wind

Beamforming on Okmok microphone array shows anomalous detections coming ~3 degrees east of volcano
- Shift consistent with offset in lightning locations
COMPARISON OF LIGHTNING AND ACOUSTIC DATA

• Unlike June 10, lightning distributed more or less uniformly around Bogoslof during March 8 eruption
 • Arrivals likely from multiple backazimuths within time window

• Instead of beamforming, direct comparison of lightning and acoustic data

• Vaisala lightning catalog converted into time-shifted squared-current rate:
 • Timing of each stroke adjusted according to its Vaisala location and an assumed acoustic speed of 335 m/s to array
 • Total squared-current summed within 1 second bins

• Acoustic data bandpassed above 20 Hz
MARCH 8 ERUPTION

- WWLLN and Vaisala lightning continued for ~15 minutes afterward

- Comparison of time-shifted squared-current rate from Vaisala (Panel D) has close correlation with high frequency (>20 Hz) acoustic data (Panel B)

- Lightning continues in plume after eruption has ended

[Haney et al., 2018]
VOLCANIC LIGHTNING ON HYDROPHONE?

13:08:55 stroke
13:12:22 stroke
June 10 eruption

Ground-coupled airwaves ~3 min later at Okmok
DUTCH HARBOR LIGHTNING DATA

- EM recordings of 13:08:55 and 13:12:22 strokes from Dutch Harbor station, courtesy of Jeff Lapierre (Earth Networks)
- Largest pulse typical of positive current cloud-to-ground (or cloud-to-ocean) lightning
- Hydroacoustic signals generated in the ocean from volcanic lightning strikes

Underwater sound from lightning strikes to water in the Gulf of Mexico

Roy T. Arnold, Henry E. Bass, and Anthony A. Atchley
Physical Acoustics Research Laboratory, Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677
(Received 12 October 1983; accepted for publication 20 March 1984)

[Arnold et al., 1984]
LIGHTNING-RELATED GLITCHES

Mt. Spurr 1992 eruption

Tungurahua 2013 eruption

[McNutt and Davis, 2000]

[Anderson et al., 2018]
GLITCHES ON OKMOK INFRASOUND ARRAY

- OK04
- OK03
- OK02
- OK01

June 10 eruption

March 8 eruption

Glitch

Thunder

~1000 counts

~0 counts

~1000 counts

~2000 counts

~3 min time shift

- OK04
- OK01
Electric field sourced from north

Apparent distance of 1-to-4 cable run is twice that of 2-to-4 and 3-to-4. Induced voltage is twice as high.

OK04 has no cable run and no voltage is induced.
MAY 17 BOGOSLOF ERUPTION

- Glitches stand out for elements 1-3, implicating lightning.
- Thunder signals continue and are visible as eruption wanes.
- Thunder exists for at least March 8, May 17, and June 10 eruptions.
- Late spring timeframe a tradeoff between extensive lightning in winter versus better acoustic propagation conditions in summer.
Other eruptions?

Fayal Volcano, Azores
Machado et al. (1962) JGR

Explosions were nearly noiseless and were accompanied by ground vibration (volcanic tremor) and electrical phenomena [see photographs in Scofield, 1958, p. 755] producing small thunderlike sounds.
CONCLUSIONS AND FUTURE WORK

- First documented observations of volcanic thunder
- Volcanic thunder detected after explosive activity abruptly ceases
- Timing and amplitude of volcanic thunder correlate with lightning data
- Why not observed for most events of the sequence? A combination of:
 - Eruptions did not end abruptly
 - Non-optimal wind conditions
 - Higher levels of background noise
- Future work needed on thunder character and lightning properties
 - For example, frequency content of thunder and whether lightning is intra-cloud or cloud-to-ground
- Motivates observations at closer range, during explosive activity, and at other volcanoes

JUNE 10 ERUPTION

- Destroyed first confirmed lava dome
- WWLLN and Vaisala lightning locations offset to NE

Beamforming on Okmok microphone array shows anomalous detections coming ~3 degrees east of volcano
- Shift consistent with offset in lightning locations
JUNE 10 ERUPTION

- Destroyed first confirmed lava dome
- WWLLN and Vaisala lightning locations offset to NE

OK01

OK04

OK03

OK02

13:12:22 stroke ~ 13:15:22 arrival

- Beamforming on Okmok microphone array shows anomalous detections coming ~3 degrees east of volcano
- Shift consistent with offset in lightning locations

[Haney et al., 2018]