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Foreshocks and Their Potential Deviation from General Seismicity

by Stefanie Seif, Jeremy Douglas Zechar, Arnaud Mignan, Shyam Nandan, and Stefan Wiemer

Abstract It is still debated whether earthquake occurrence can be described as a
single process or whether foreshocks are different phenomena. If foreshocks behaved
differently, this would suggest a change of physical processes in the mainshock prepa-
ration phase that would boost hopes of forecasting large earthquakes. Most research
on foreshocks focuses on case studies or uses global datasets in which recordings of
small earthquakes are incomplete and are thus neglected. We do comprehensive fore-
shock statistics on all mainshocks in a regional earthquake catalog that is complete
above M 2.5. To detect possible differences between foreshocks and seismicity that
follows a uniform triggering model (the epidemic-type aftershock sequence [ETAS]
model), we perform a null-hypothesis test. We also estimate the size of the differences
between observed and ETAS-simulated foreshocks.

We define different sets of foreshocks using two different methods, because there
is no unique definition: a nearest-neighbor declustering technique (Zaliapin et al.,
2008) and a variety of space–time windows (e.g., Agnew and Jones, 1991). We use
data from southern California, northern California, and Italy. For each region, we first
search an appropriate null model: an ETAS model that describes aftershock numbers
well. In southern California, we find an appropriate spatiotemporal model that is char-
acterized by a large productivity parameter α. After performing a null-hypothesis
test for different mainshock and foreshock magnitudes, we find foreshock signals
(p < 0:05) for all mainshocks sizes and independent of the foreshock’s lower mag-
nitude threshold. Observed mainshocks have more foreshocks than the ETAS model
predicts.

Electronic Supplement: Test whether a single epidemic-type aftershock se-
quence (ETAS) model describes general seismicity, with figures showing p-values
of the null hypothesis.

Introduction

Investigating the existence of foreshocks and their spa-
tiotemporal patterns is very important for predicting large
earthquakes. A famous example of a successful prediction
is the Chinese Haicheng earthquake in 1975, for which cor-
rect evaluation of foreshock signals saved thousands of lives
(Wang, 2006). Such social impact makes foreshocks an im-
portant research topic.

However, the question of which mechanisms are respon-
sible for foreshocks is still disputed. There are two end-
member views that can be defined as bottom-up triggering and
top-down loading (Mignan, 2014). Bottom-up triggering has
already been extensively investigated. Self-organized critical-
ity (Bak et al., 1988) and the epidemic-type aftershock
sequence (ETAS) model (Ogata, 1988, 1998), the most fre-
quently used statistical model, are examples of bottom-up trig-
gering. Bottom-up triggering assumes that earthquakes are
either triggered by preceding events or are background events

that occur at a constant rate. Because all earthquakes have the
potential to trigger others, the categories of foreshocks, main-
shocks, and aftershocks are not mutually exclusive.

The alternative hypothesis is top-down loading, in
which precursors occur due to tectonic loading caused
by aseismic slip (Das and Scholz, 1981; Kanamori, 1981;
Ohnaka, 1992; Dodge et al., 1995, 1996; Mignan, 2012).
Under this view, foreshocks are expressions of minor stress
releases on asperities that have less resistive power than the
large fault and hence break before it. Foreshocks and main-
shocks would thus originate from the same underlying proc-
ess and not interact, as bottom-up triggering proposes. The
idea of tectonic loading as the underlying process is picked
up, for example, in the non-critical precursory accelerating
seismicity theory model by Mignan (2012).

Since the 1930s, numerous studies investigated the oc-
currence of foreshocks (e.g., Jones, 1984; Agnew and Jones,
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1991; Dodge et al., 1995, 1996; Abercrombie and Mori,
1996; Reasenberg, 1999; Kato et al., 2012; Yagi et al., 2014).
Most of the studies that report anomalous foreshock patterns
reach this conclusion after investigating single foreshock–
mainshock sequences: they are case studies. Their focus is
generally to study the nucleation process of large earth-
quakes and determine a favorable foreshock mechanism.

However, there is skepticism about whether foreshocks
can be systematically identified, because it is still unclear
whether foreshocks differ from normal seismicity or are
actually temporary perturbations thereof. To answer this
question, several studies investigated the occurrence and fea-
tures of foreshocks more systematically by taking account of
all mainshocks that happen in a certain area, providing a
comprehensive picture of foreshock occurrence. Many of
those studies concluded that ETAS is a good model for de-
scribing seismicity, including any claimed precursors (e.g.,
Helmstetter and Sornette, 2003; Felzer, 2004; Hardebeck
et al., 2008; Marzocchi and Zhuang, 2011). In short, past
research has found: first, some large earthquakes are pre-
ceded by foreshocks; and second, there is strong evidence
that those foreshocks are just coincidence and cannot be dis-
tinguished from normal seismicity. This would mean large
earthquakes cannot be predicted based on foreshock activity,
because in the ETAS model, the chances of a large earth-
quake following a small earthquake are very low.

We wish to challenge this conclusion, drawing on fea-
tures that set our study apart from those mentioned above.
Helmstetter and Sornette (2003) and Felzer (2004) could
confirm that foreshock patterns are in line with the conse-
quences expected under the ETAS model. However, they
did not simulate synthetic ETAS catalogs, which would per-
mit a one-to-one comparison between observations and
ETAS. They set relatively high-cutoff magnitudes, above
which data are considered in their analysis: Mc � 3 and
5.6, respectively.

Marzocchi and Zhuang (2011) compared foreshock oc-
currence in ETAS-simulated catalogs with observed catalogs
for southern California and Italy. However, they used a high
Mc � 4 that could obscure foreshock patterns, due to insuf-
ficient data. They compared the frequency of foreshock–
mainshock pairs between ETAS and the catalogs included.
By taking pairs as the statistical parameter of interest, in
which a pair is defined as a mainshock preceded by at least
one foreshock, valuable information about the number of
foreshocks is neglected.

There are studies that concluded that the characteristics
of foreshocks set them apart from general seismicity.
Brodsky (2011) and Shearer (2012) observe an increased
aftershock-to-foreshock ratio in comparison to ETAS. They
consider relatively small mainshocks in their studies (in com-
parison to the current study),M 3–4 andM 2–5, respectively.
Their final result could be biased because the conclusion
depends on the aftershock rate that could be too low, due
to incomplete aftershocks, as the authors state. In addition,
their criteria for aftershock removal that removes mainshocks

happening 3–4 days after a large earthquake might not be
efficient, and a considerable amount of aftershocks might
still remain in the foreshock sequences, which could bias
the result. Lippiello et al. (2012, 2017) found a deviation
between the spatial distribution of foreshocks and ETAS;
however, they did not perform a statistical test to consolidate
that conclusion. The study of Bouchon et al. (2013), which
shows an exceptionally strong acceleration of seismicity be-
fore interplate mainshocks in comparison to ETAS, contains
points of criticism that raise doubts about the conclusion.
Felzer et al. (2015) criticized the study for using incomplete
data and inappropriate ETAS parameters that could have
caused the apparent differences.

Furthermore, none of the mentioned studies, except
for Helmstetter and Sornette (2003) and Felzer (2004),
ascertained whether foreshock patterns occur at different
mainshock magnitudes. No study, to our knowledge, has in-
vestigated the influence that the lowest cutoff magnitudes
have on foreshock patterns.

Compared to the aforementioned studies, our study
differs in the following ways:

1. We include low-foreshock magnitudes (Mc � 2:5).
2. We choose the number of foreshocks as the statistical

parameter of interest.
3. We perform a null-hypothesis test in which we compare

values of the chosen statistical parameter between syn-
thetic ETAS catalogs and the observed catalog.

4. We choose to evaluate the null hypothesis by comparing
distributions, not averages of the number of foreshocks.

5. We also report the effect size: the difference between the
number of observed and ETAS foreshocks.

6. We use different foreshock definitions (declustering and
space–time windows) in our analyses.

7. We use different mainshock magnitudes (M � f4:5 − 5;

5 − 5:5; 5:5 − 6; 6�g) and cutoff magnitudes
(Mc � f2:5; 3; 3:5; 4g) in our analyses, to determine
whether large mainshocks produce different foreshock
patterns and whether the foreshock patterns are more
pronounced when potential foreshock data is increased.

By evaluating foreshock distributions instead of the
statistics (e.g., mean or median) thereof, we avoid assuming
that the statistics are representative of the data. p-values tell
us that there is a difference between the null hypothesis and
the alternative but do not allow us to conclude whether or not
the difference is of practical importance. To provide a com-
plete picture, we therefore also report effect sizes, quantify-
ing both the size and the direction of the effect.

In this study, we are faced with having to define what a
foreshock is. Defining a foreshock is not straightforward and,
with this article, we do not aim to provide a universal def-
inition, but we want to emphasize that each definition has its
meaning and that conclusions should be drawn keeping these
in mind. We decided to define foreshocks in two different
ways: (1) in terms of varying space–time windows, and
(2) with a nearest-neighbor stochastic declustering method
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(Zaliapin et al., 2008). We provide a more comprehensive
description of these definitions in the Foreshock Definition
and Aftershock Removal section. The method to identify
anomalous foreshocks as presented here may be applied to
any other foreshock definition in the future and hence might
serve as a tool to further enhance our understanding of fore-
shocks. By investigating foreshocks of different mainshock
magnitudes, we examine potential differences in the nucle-
ation process between small and large mainshocks. By using
different cutoff magnitudes, we improve the understanding
of the role of small earthquakes.

The goal of this study is to answer the question whether
the average foreshock behavior of a region deviates from the
rest of the seismicity. With identified deviations, we could, in
the future, define peculiar foreshock patterns and raise
alarms for impending large earthquakes. For operational pur-
poses, these patterns would ideally look the same in the
whole region. Patterns valid for a whole region emerge from
comparing observed foreshocks with rather simple ETAS
models that describe the whole region with one parameter
set. Therefore, we compare two rather simple but also one
more complex (spatially variable) ETAS model in the search
for a null model. In our study, we consider different regions,
namely, southern California, northern California, and Italy. We

verify whether our models are adequate to describe seismicity
in the Results and Discussion section and in the Ⓔ electronic
supplement. Then, with the chosen null model, we verify or
disprove the foreshock null hypothesis in a null-hypothesis
test. We find that peculiar foreshock patterns exist in southern
California for all mainshock sizes, all lower magnitude thresh-
olds of foreshocks, and both foreshock definitions.

Data

Our study draws on three different catalogs: southern
California, northern California, and Italy. In Figure 1, we plot
the earthquake data of the respective catalogs. In Table 1, we
describe the data (catalog duration, spatial polygon, target,
and auxiliary data) and indicate the corresponding complete-
ness magnitude Mc and b-value. Mc is calculated using the
Clauset method (Clauset et al., 2009) and the b-value with
maximum-likelihood estimation (Tinti and Mulargia, 1987)
and data above Mc. Auxiliary events in space and time are
used to estimate more reliable ETAS parameters (Wang
et al., 2010). We choose to investigate the three regions of
our study separately, instead of performing a joint analysis of
their foreshock data. This should highlight the potential
regional differences in foreshock behavior.

Figure 1. Map of seismicity with M ≥ 2:5 in the studied regions. (a) Southern California (1981–2014), (b) northern California (1984–
2015), and (c) Italy (2005–2016).

Table 1
Description of Earthquake Data and Data Analysis

Catalog (yyyy/mm/dd)
Target Time (Start)
(yyyy/mm/dd) Target Space

Target Number
of Earthquakes

Auxiliary Number
of Earthquakes

Mc (St.
Dev.)

b-Value
(St. Dev.)

Southern California
1981/01/01 to 2015/01/01*

1986/01/01 ANSS polygon† 33,789 (M0 � 2:5) 13,063 (M0 � 2:5) 2.4 (0.06) 1.07 (0.01)

Northern California
1984/01/01 to 2015/12/31*

1989/01/01 ANSS polygon† 18,046 (M0 � 2:5) 12,803 (M0 � 2:5) 2.0 (0.51) 0.97 (0.03)

Italy 2005/04/16 to
2015/11/19, Depth < 35 km*

2006/04/16 Italy mainland
polygon

5,960 (M0 � 2:5) 1,272 (M0 � 2:5) 2.0 (0.51) 1.01 (0.02)

St. Dev., standard deviation.
*Southern California: catalog by Hauksson et al. (2012); Northern California: catalog by Waldhauser (2009); Italy: catalog by Gasperini et al. (2013).
†Advanced National Seismic System (ANSS) authoritative regions.
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Foreshock Definition and Aftershock Removal

One correct foreshock definition does not exist. Rather
there are multiple possible foreshock definitions that reflect
different aspects of foreshocks; for example, are they sponta-
neous or triggered, do they scale with mainshock magnitude,
etc? In this article, we apply two possible foreshock defini-
tions. The first one is a window approach that defines fore-
shocks inside a space–time window around the mainshock
(e.g., Agnew and Jones, 1991; Marzocchi and Zhuang,
2011). It does not distinguish between a clustered and spon-
taneous event that are the two parts that our second foreshock
definition consists of. The second definition is based on the
declustering approach after Zaliapin et al. (2008) that is a
nearest-neighbor approach that distinguishes between main-
shocks, aftershocks, and foreshocks. The nearest neighbor is
defined in means of distance, time difference, and magni-
tude, according to the following expression:

EQ-TARGET;temp:intralink-;df1;55;521ηij � tij × rdij × 10−b�Mi−Mc�; �1�

in which ηij is the nearest-neighbor distance between two
events i (earlier event) and j (later event), tij is the time dif-
ference, rij is the distance, d is the fractal dimension of epi-
centers, b is the b-value of the Gutenberg–Richter law, and
Mi is the magnitude of the earlier event. Earthquakes form
clusters when their distances to their nearest neighbor ηij are
below a threshold η0. We optimize for η0 in each region of
this study. The largest earthquake in a cluster is defined as the
mainshock. Earthquakes that precede it and are in the same
cluster are defined as its foreshocks. Hence, Zaliapin fore-
shocks are, per definition, clustered. By testing the null
hypothesis with foreshocks defined with the window and
the Zaliapin definition, we hope to obtain evidence whether
anomalous foreshocks are composed of clustered or sponta-
neous earthquakes.

In both definitions, we consider epicentral distances
between fore- and mainshocks. This choice probably has an
effect on the result, and while it would be interesting to also
study 3D distances, depth is not straightforward to simulate
(and estimate) in ETAS, which leaves this investigation
beyond the scope of this article. For the former definition,
we use different windows, covering combinations of f3; 10g
days and f3; 10; 20; 40g kilometers that include the ranges
used in previous studies. We compare the seismicity preced-
ing M 6+ earthquakes in southern California and ETAS
catalogs in Figure 2 for different space–time windows.

We speculate that foreshocks and aftershocks are the
results of different processes. So as not to obscure the
foreshock process, we remove foreshock sequences that
are biased by potential aftershocks. We define a foreshock
sequence to be biased if a large earthquake (M 5+) occurs
sufficiently close in space and time to the mainshock, such
that the mainshock j is considered an aftershock of the large
event i, rather than a spontaneous background event. We de-
fine this to be the case when the aftershock rate gij is larger

than the background rate μj. gi;j is calculated from the trig-
gering capabilities of the ith earthquake at the location and
time of the jth event (equation 3), and μj is calculated by
stochastic declustering and Gaussian kernel smoothing. The
definition of large events as earthquakes with M 5+ is arbi-
trary but certainly includes earthquakes powerful enough to
produce observable aftershock sequences. Table 2 sums up
the number of large mainshocks (M 6+), removed main-
shocks, and foreshocks for each catalog.

ETAS Model

To evaluate whether foreshocks might originate from a
physical process different from the rest of seismicity, we for-
mulate our null hypothesis: “all seismicity follows the same
process and is hence described by the same model.” We
know that the main features of seismicity are well described
as a composition of background and triggered seismicity
(e.g., Console, 2003; Werner et al., 2011; Zhuang, 2011).
This composition also characterizes the ETAS model that we
hence choose as our null model. In the following, we discuss
shortcomings of the standard ETAS model and propose the
choice of three models as potential null models. We intro-
duce the formulation of our ETAS-base model, from which
the other two can be derived, and explain the simulation
procedure.

Null Models

ETAS is a model that is, by definition, imperfect, and it
hence describes seismicity only to a certain degree. Fortu-
nately, we know exactly which features it describes, namely
those contained in the model formulation. Deviations be-
tween model and data are expected to occur as a consequence
of our model’s imperfection. We can learn from these devia-
tions as they point to deficits of the model. Understanding the
deficits helps us to understand the process better, as, for
example, Ogata (1988) showed with his residual analysis.

Many researchers since then searched for reasons that
could explain observed deviations. They found that the stan-
dard models mostly do not account for the following seismic-
ity features: (1) temporally varying seismicity, (2) a spatially
varying triggering rate, (3) missing aftershocks, (4) aniso-
tropic aftershock distribution, (5) finite temporal and spatial
triggering, and (6) magnitude-dependent parameters.

Ideally, all of these features should be implemented in
the ETAS model. However, this is not straightforward, and to
the present day, no model formulation has been developed
that implements all features. Furthermore, there exists no
study that quantifies different biases that originate from
ignoring the features to determine the most important ones.
Therefore, regarding our study, it is not feasible to aim for the
“best” model as a null model. Our strategy is to define three
null models, each considering different, but not all, features
from lists 1–6 and compare them in terms of their deviation
from the data.
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These are, first, an ETAS-base with a spatially variable
background rate and a uniform triggering function (described
in the next paragraph) that does not account for any of the
features in lists 1–6. Second, is an ETAS-fixed α, which is an
ETAS-base with α fixed to β, with which we intend to ac-
count for incomplete aftershocks (e.g., Seif et al., 2017), spa-
tial anisotropy (Helmstetter et al., 2005; Hainzl et al., 2008),
and a temporally varying background rate (Hainzl, 2013;
Llenos and Michael, 2013). α � β also reproduces Båth’s
law (e.g., Felzer, 2002) and is in agreement with static-stress
triggering models (Hainzl et al., 2010). Third, is ETAS-var,

which is an ETAS-base but with spatially variable ETAS
parameters, as described in Nandan et al. (2017).

In the Results and Discussion section, we investigate to
which degree each of these models is able to describe our data,
through their performance in describing aftershocks.We choose
the model with the least deviations from the data as the
null model.

Parameter Estimation

Our base model, ETAS-base, is a spatiotemporal ETAS
model, with a spatially variable background rate and a

Figure 2. Distance–time plot of observed and epidemic-type aftershock sequence (ETAS) model seismicity that precedes M 6+ earth-
quakes and a qualitative interpretation of high- and low-earthquake density. The data is plotted semitransparently, with high-density areas
appearing in darker shades, the shaded ellipses representing a qualitative interpretation of earthquake density. The distance is plotted propor-
tional to its square to account for the 2D epicentral distances. Data concerning mainshocks occurring in a sequence of aftershocks are
removed (see the Foreshock Definition and Aftershock Removal section).

Table 2
Number of Mainshocks, Foreshocks, and Removed Mainshocks

Catalog Number of Maishocks with M 6+ Number of Removed Mainshocks Number of Foreshocks with M 2.5+

Southern California 8 (6) 2 (1) 2,2,12,0,7,10 (2,12,0,7,23)
Northern California 13 (11) 3 (1) 0,0,0,0,0,1,0,0,0,0 (0,0,0,0,0,0,0,0,0,0)
Italy 2 (2) 0 (0) 4,3 (20,3)

The number of mainshocks, removed mainshocks (due to their occurrence in an aftershock sequence) and foreshocks for the different
study regions. The values depend on the chosen foreshock definition: foreshocks are defined either within a space-time window of 3 days
and 10 km or with the Zaliapin declustering (in parenthesis).
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uniform triggering function. The other models, ETAS-fixed
α and ETAS-var, can be derived from this formulation. The
earthquake rate at time t and location x; y, considering the
history Ht of previous events, is

EQ-TARGET;temp:intralink-;df2;55;514λ�t; x; yjHt� � μ × bg�x; y�|������{z������}
background rate

�
X
j:tj<t

g�t − tj; x − xj; y − yj;Mj�
|��������������������������{z��������������������������}

triggering function

; �2�

with the triggering function

EQ-TARGET;temp:intralink-;df3;55;409g�t; x; y;M� � K0eα�M−Mcut�|�������{z�������}
Productivity

× �t� c�−p|����{z����}
Omori type decaywith time

× �x2 � y2 � deγ�M−Mcut��−q|��������������������{z��������������������}
decaywith distance

: �3�

We estimate the ETAS parameters K0, α, c, p, d, γ, q, μ
individually for all regions by maximizing the log-likelihood
function of equation (2). We consider data aboveMcut � 2:5,
because at this magnitude all catalogs are complete (see Ta-
ble 1). To estimate the maximum likelihood, we normalize
the Omori and distance decay in equation (3). We simulta-
neously invert for the background rate bg�x; y� by stochastic
declustering (Zhuang et al., 2002) with the estimated ETAS
parameters. Stochastic declustering results in a background
probability for each earthquake that is used to weight Gaus-
sian kernels around each earthquake for which the sum at x; y
results in bg�x; y�. The Gaussian kernels have a variable
bandwidth that is determined by their np nearest neighbors.
We find the optimal np to be close to six, which is conse-
quently used in this study. In southern and northern Califor-
nia, Omori’s p is fixed to 1.27, which is the average estimate
of p in Werner et al. (2011). This is because p is difficult to
estimate (Schoenberg et al., 2010; Harte, 2015; Seif et al.,
2017) and probably is underestimated (Harte, 2015; Seif
et al., 2017), and if this is not fixed, it leads to supercritical
parameters for both regions. The estimated ETAS parameters

for ETAS-base and ETAS-fixed α are shown in Table 3 for all
regions. ETAS-var uses the same triggering function as
ETAS-base (compare equation 3) but calculates spatially var-
iable parameters following the procedure of Nandan et al.
(2017), and their estimates are not summarized in Table 3.

Simulation

We simulate 1000 catalogs for each parameter set in
Table 3 and for ETAS-var only in southern California. The
simulated magnitudes are drawn from an exponential distribu-
tion, the Gutenberg–Richter distribution, with a region-specific
b-value given in Table 1. The magnitudes are restricted to
a lower and upper bound, Mcut � 2:5 and Mmax � 7:5;
�7:2; 6:5�, in southern California, northern California, and
Italy, respectively. The upper bound is set to ensure similarity
between the observed and simulated catalog and should not be
interpreted as an insertion about the physics of earthquakes in
the region. There seems to be a misconception that α � β in-
duces an explosive process, making simulation impossible.
Although this is true when considering magnitudes from a
Gutenberg–Richter distribution with no upper magnitude limit,
it does not hold for the the truncated case. The branching ratio
that defines the average number of offspring when applying an
upper magnitude limit becomes subcritical, and hence α � β
poses no problem for realizing simulations.

Null-Hypothesis Testing

In the null-hypothesis test, we compare the distribution
of the number of foreshocks per mainshock of observed and
ETAS-simulated catalogs (Fig. 3). Therefore, we first ana-
lyze the foreshock distributions and find a model to describe
them. Then, we perform a null-hypothesis test and report
effect sizes, which are the average differences between ETAS
and observed foreshock numbers.

Foreshock Distribution

The distribution of the number of foreshocks is the key
element of this study and the null-hypothesis test. We there-
fore describe the distribution of the number of foreshocks
by its best-fitting model. For the evaluation, we consider

Table 3
Estimated ETAS Parameters at Mcut � 2:5

Catalog (Mcut � 2:5) K0 α C p d q γ μ n n (emp)

SC, ETAS-base 0.462 1.132 0.023 1.270 0.015 1.372 1.355 1.000 0.853 0.868
SC, ETAS-fixed α 0.038 2.450 0.024 1.270 0.006 1.506 1.958 1.001 0.470 0.781
NC, ETAS-base 0.272 1.239 0.013 1.270 0.009 1.539 1.960 0.998 0.600 0.588
NC, ETAS-fixed α 0.051 2.210 0.012 1.270 0.011 1.824 2.087 0.998 0.548 0.586
Italy, ETAS-base 0.395 1.172 0.003 1.167 1.127 2.140 0.734 1.005 0.789 0.803
Italy ETAS-fixed α 0.079 2.290 0.004 1.206 1.106 2.499 0.974 1.004 0.692 0.761

The parameters relate to the different study regions of southern California (SC), northern California (NC), and Italy.
They are estimated with different epidemic-type aftershock sequence (ETAS) model formulations: ETAS-base and ETAS-
fixed α (described in “ETAS model”). n is the branching ratio calculated with Gutenberg–Richter distributed or empirical
magnitudes.
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different plausible competing models: a lognormal, exponen-
tial, power law, and stretched exponential distribution. Be-
cause the lognormal, power law, and stretched exponential
are either not defined or defined as y � 0 at x � 0, which
both contradict our observations, we fit only foreshock data
that are larger than 0 to all models. The best-fitting model is
the model with the lowest Bayesian information criterion
(BIC). We find that observed foreshocks cannot be fitted well
by any model, so we only report the model fits for ETAS
foreshocks. Representative for all windows, we show in
Figure 4 the observed and ETAS foreshock data of southern
California defined in a 3-day and 10-km window and com-
pare different models. We find that the stretched exponential
distribution fits the ETAS foreshocks best in 60% of the
cases. Considering all window definitions and the Zaliapin
definition, the stretched exponential distribution always fits
best. The average BIC differences to the second-best model
are always higher than 10, which is strong evidence in favor
of the stretched exponential. The model parameters seem to
be independent of the mainshock magnitude and only depen-
dent on the foreshock magnitude (compare model parameters
of the first column in Fig. 4). Observed foreshocks deviate
from ETAS foreshocks and their models.

Null-Hypothesis Test

We formulate the null-hypothesis test in a way that it
uses the full distribution, rather than just its mean or median

value. For each mainshock n, we ask the probability of its
number of foreshocks Fsn or any higher value being ob-
served in ETAS, with 1 − cdf�X � Fsn�. cdf stands for the
cumulative density function of the probability mass func-
tion’s (pmf) of ETAS number of foreshocks. The sum of
the logarithms of these probabilities, the joint log-likelihood
(JLL) for all mainshocks, is then our test statistic. The JLL is

EQ-TARGET;temp:intralink-;df4;313;649JLL �
XN

n�1

log�1 − cdf�X � Fsn�� with X∈N �4�

and N is the number of mainshocks. To evaluate the null hy-
pothesis and obtain a p-value, we repeat 1000 JLL calcula-
tions with mainshocks from ETAS catalogs. Each JLL is
calculated from N mainshocks that are randomly drawn from
the ETAS pmf. Then, we compare the observed JLL with the
ETAS distribution of JLL and calculate the p-value with the
fraction of JLL�ETAS� ≤ JLL�obs�.

To detect a possible dependence of foreshock occur-
rence on mainshock magnitude, we evaluate the null hypoth-
esis at different mainshock magnitudes Ms � f4:5 − 5; 5−
5:5; 5:5 − 6; 6�g. To detect the potential importance of small
events, we evaluate the null hypothesis at different cutoff
magnitudes Mcut � f2:5�; 3�; 3:5�; 4�g. The evaluation
of multiple null-hypothesis tests often begs the question of
whether p-values should be adjusted (Feise, 2002). With a
significance level of 0.05, 1 in 20 independent tests is ex-
pected to be (wrongly) rejected if all hypotheses turn out to
be true. This is called a type-I error. If avoiding type-I errors
is a high priority, one idea would be to adjust p-values. We
decided not to adjust the p-values (for our reasons, see the
Results and Discussion section). We show an example of the
null-hypothesis test in Figure 5 for southern California fore-
shocks defined within a window of 10 km and 3 days.

We choose to calculate the JLL (equation 4) with
1 − cdf�X � Fsn� (observing Fsn or any higher value) and
not with pmf�X � Fsn� (observing exactly Fsn), because
pmf is not a continuous function and is very sensitive to
the number of ETAS simulations from which it is derived.
Certain bins of the pmf may contain exceptionally small
or large number of events because the distribution is not suf-
ficiently sampled. By taking 1 − cdf, the result is less sensi-
tive to sampling and is more continuous. Bins with extremely
high or low populations have less influence, because they do
not take the full weight. At the same time, evaluating 1 − cdf
makes the null-hypothesis test a one-sided test, in which only
a surplus of foreshocks is detected.

Effect Size

The drawback of statistical significance tests is that a
significant result does not necessarily imply a large effect,
and a nonsignificant result does not imply a small effect. Re-
porting the effect size δ, in our case the difference between
ETAS and observed foreshock numbers, helps us to see the
whole picture. Although significance tests tell us whether

Number of foreshocks

P
m

f (
bi

n 
si

ze
 =

 2
)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

El Mayor Cucapah 
2010

Hector Mine 
1999

Northridge 
1994

Landers 
1992

Joshua Tree 
1992

95%−ile 
ETAS

Figure 3. Distribution of observed and ETAS-simulated num-
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(compare Table 2) and compared with a distribution of ETAS fore-
shocks, obtained from 1000 simulated catalogs. The distribution is
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version of this figure is available only in the electronic edition.
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there is an effect, the effect size tells us how big this effect is.
If we know the absolute difference, we can judge whether
this effect is of substantive importance, for example, in
operational earthquake forecasting.

If data are normally distributed, we measure the effect
by comparing the mean values of the null and alternative hy-
potheses. If data are not normally distributed, as in our case
(compare Fig. 3), the Mann–Whitney U test, also known as
the Wilcoxon rank sum test, compares tendencies of two in-
dependent samples. The requirement for the test is that data
must at least be ordinal scaled, which is fulfilled. To estimate
the effect size, differences between all possible combinations

of the two independent (unpaired) samples, marked with
groups 1 and 2, are calculated. Then, the confidence interval
is expressed by 95% of the calculated differences.

Results and Discussion

In the present study, we test the null hypothesis that
foreshocks behave like general seismicity. We evaluate this
hypothesis by comparing the distribution of the number of
foreshocks with a uniform triggering model (ETAS) in which
all earthquakes are generated by the same process.
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Here, we first report the performance of different ETAS
models in describing aftershock numbers. Comparing the per-
formance, we determine the best performing to be the null
model. Second, we discuss the interpretation of p-values and
provide an estimate of the power of the null-hypothesis test.
Finally, we show the resulting p-values of the foreshock null-
hypothesis test. Our focus in the discussion is on low p-values,
in which the statistical discrepancy between observed fore-
shock data and ETAS’s predictions is substantial. Furthermore,
we report effect size, the difference between the observed and
ETAS-predicted number of foreshocks. This additional infor-
mation will be used to judge whether an effect is of consider-
able size. Here, we discuss our results with regard to the
mainshock size, the foreshock definition, the spatiotemporal
occurrence of foreshocks, and the importance of small events.

ETAS Null Model

We introduce in “ETAS model” three different models,
ETAS-base, ETAS-fixed α, and ETAS-var, as potential null

models for the foreshock null-hypothesis test. A null model
should describe seismicity under the null hypothesis well,
disregarding foreshocks. Here, we test the performance of
the three models in describing seismicity by examining their
ability to describe aftershock numbers. Deviations of model
and data should be most evident in the aftershocks, because
the majority of seismicity features that are not accounted for
in the models describe aftershock behavior. Unaccounted
seismicity features might be (1) temporally varying seismic-
ity, (2) a spatially varying triggering rate, (3) missing after-
shocks, (4) anisotropic aftershock distribution, (5) finite
temporal and spatial triggering, and (6) magnitude-depen-
dent parameters.

We choose to investigate the aftershock number,
because number is also the parameter of interest in the fore-
shock null-hypothesis test. In doing so, we focus on testing
the ability of the productivity parameters to describe the
numbers correctly and not whether the spatiotemporal
behavior is modeled correctly. In our view, the number
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(of aftershocks or foreshocks) is the parameter of most inter-
est, from which, for example, the probability of a destructive
large aftershock can be calculated (independent of its exact
location). Regarding foreshocks, the number is of practical
importance because potential foreshock patterns that might
be derived from our results can be most easily detected by
simply counting.

To evaluate the performance, we calculate the difference
between observed and ETAS aftershock numbers, the so-
called effect size. The number of aftershocks is defined in the
same way as are foreshocks, within a space–time window
(after the mainshock) and with the Zaliapin definition of
aftershocks. Mainshocks that happen in large aftershock se-
quences are removed from the analysis, according to rules
defined in the Foreshock Definition and Aftershock Removal
section. We carry out this test, also called the Wilcoxon rank
sum test, because it is a two-sided test that detects deviations
in both directions. If the confidence interval of the effect size
includes 0, we conclude that the ETAS model reproduces the

number of aftershocks well. If this is not the case, it likely
means, depending on the model, that some or all points (2–6)
are not modeled correctly and, depending on the degree of
deviation, we should not consider the model as a null model.

Because all of our models are imperfect and only
account for a subset of all possible seismicity features, we
expect to see deviations between data and model, and we
discuss them in the following. We start by evaluating the
effect size between ETAS-base and observed aftershock
numbers in southern California in Figure 6. Applying the
window definition, we see that mainshocks with M 5.5–6
and 6+ have more aftershocks than predicted by ETAS-base
(indicated by the dashed filling of both the upper- and lower-
confidence interval). When evaluating the effect size be-
tween observed and ETAS-fixed α aftershocks, we are going
to see that this might be the consequence of a too low α.
Mainshocks with M 4.5–5, depending on the aftershock’s
lower magnitude level, have either too few (M 2.5+) or too
many (M 4+) aftershocks. This might be related to aftershock

Figure 6. Southern California, ETAS-base: 95% confidence intervals of the effect size between ETAS-base and observed aftershocks.
Each rectangle is divided into the lower and upper bound of confidence. Confidence intervals are plotted for different aftershock definitions,
(a) Window and (b) Zaliapin, and distinguished for several mainshock (rows) and aftershock (columns) magnitudes. The subplots of the
window definitions refer to different space–time windows, in which the y axis of each subplot indicates the spatial window (km) and the x axis
indicates the temporal window (day). The null hypothesis is rejected when the lower- and upper-confidence bounds are either both negative
(filled) or both positive (dashed). It is accepted when the confidence bounds include 0. The color version of this figure is available only in the
electronic edition.
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incompleteness that is present at low magnitudes forM 2.5+.
Or it might be related to swarms, forM 4+ that are known to
have particular seismicity, modeled with low α or temporally
variable background rate (Hainzl, 2013), that we do not ac-
count for. Or in both cases, spatially variable ETAS param-
eters might explain the deviation. Specifically, the variability
should be present in the productivity parameters and with
them also the branching ratio, because these could model the
observed surplus or lack of aftershocks. We will see later that
spatial variability only explains the deviations for M 2.5+
aftershocks. The deviation of M 4+ aftershocks can be
explained by swarms and insufficiently removed aftershock
sequences. This becomes evident after plotting the location
of 4:5 < M < 5 mainshocks with their corresponding num-
ber ofM 4+ aftershocks. We see in Figure 7 that mainshocks
with many aftershocks happen either close to geothermal re-
gions that are known to host swarms or in the vicinity of an
M 6+ mainshock characterized by numerous aftershocks.
Overall, ETAS-base as a null model describes aftershocks
in only 44% of the cases, considering all windows and lower
magnitude thresholds. Applying the Zaliapin definition
leads, in accordance with the window definition, to rejections
forM 6+ and 4.5–5 mainshocks but no rejections forM 5.5–
6, that sums up to 63% acceptance with Zaliapin.

In Figure 8, we compare ETAS-fixed α with observed
aftershock numbers. Applying the window definition, we see
that the null hypothesis is generally accepted (0 is included in
the confidence bounds). It is only rejected for small main-

shocks (M 4.5–5) and M 2.5+ and M 4+ aftershock magni-
tudes, identical to the findings for ETAS-base. We suspect
the same reasons as mentioned in that context. Overall, the
null hypothesis is accepted in 77% of the cases for the win-
dow definition. Applying the Zaliapin definition, aftershocks
of M 4.5–5 mainshocks are similarly rejected. However, in
disagreement with the window definition, M 5.5–6 main-
shocks have too few M 3+ and 4+ aftershocks. This sums
up to 69% acceptance with Zaliapin.

In Figure 9, we compare ETAS-var with observed after-
shock numbers. Generally, we observe too many aftershocks
throughout all mainshock magnitudes, both for the window
and Zaliapin definition. This tallies with observations for
ETAS-base and might hence be explained by an α < β that
is generally observed in ETAS-var (compare Nandan et al.,
2017, Fig. 2d). Aftershocks withM 2.5+ of 4:5 < M < 5 are
explained well by ETAS-var. Spatial variable seismicity
might hence be the reason for the observed deviation of
ETAS-base and ETAS-fixed α in this case. In total, only 43%
(38%) of cases accept the null model for the window (Zalia-
pin) definition.

In summary, for southern California, we find that ac-
counting for aftershock incompleteness and spatial aniso-
tropy of aftershocks, by fixing α � β, leads to the best
performance of the null model in describing aftershock data.
This makes the ETAS-fixed α an appropriate null model for
seismicity, excluding swarm seismicity at mainshocks with
4:5 < M < 5 andM 4+ aftershocks and spatial variable seis-
micity for M 2.5+ aftershocks.

Regarding northern California and Italy, we find that
none of our null models describes aftershock seismicity well.
In the Ⓔ electronic supplement, we show that in northern
California, when applying the window definition, only
55% (16%) of data subsamples are described by ETAS-base
(ETAS-fixed α). In Italy, only 39% (42%) of data subsamples
are described by ETAS-base (ETAS-fixed α). The values are
similar for the Zaliapin aftershock definition. We will hence
not perform a foreshock null-hypothesis test in northern
California or Italy.

Interpretation of p-Values, Multiple p-Values, and
Power of the Test

We present part of our results in the form of p-values.
p-values are the probability of observing data or obtaining a
test statistic under the null hypothesis. Our test statistic is the
JLL of finding at least the number of observed foreshocks
under the ETAS model. Accordingly, a p-value below the
significance level (α � 0:05), as calculated in a one-tailed
test by the fraction of JLL�ETAS� ≤ JLL�obs�, provides evi-
dence that more foreshocks are observed in reality than
ETAS predicts. When we compare p-values of the same
mainshock magnitude for different foreshock definitions
(i.e., space–time windows, Zaliapin, foreshock magnitudes),
we can conclude the relative effect size between the two.
This is possible because the p-value is a confound index
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Figure 7. Map of mainshocks (M 4.5–5) and their number of
aftershocks above Mc � 4 indicated in different shades. After-
shocks are defined in a 3-day and 10-km window. Many aftershocks
indicate a deviation from, and few aftershocks an agreement with,
ETAS-fixed α. The color version of this figure is available only in
the electronic edition.
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reflecting both effect size and sample size (Rosenthal and
Rosnow, 1991). Because the sample size remains constant
for the same mainshock magnitude, changes in the p-value
can be attributed to the effect size.

To enable the study of the previously mentioned attrib-
utes, we divide our dataset into 16 subdatasets containing
different mainshock and foreshock magnitudes. Null-hy-
pothesis tests are performed on each subdataset. Testing
multiple null hypotheses in a study often results in the adjust-
ment of the p-value. However, there are several practical ob-
jections to adjusting p-values (Feise, 2002). First, the
adjustment factor depends on the number of individual tests,
which is arbitrary: there is no right number. Second, reducing
type-I errors (the chance of finding nonexistent foreshock
signals) increases type-II errors (the chance of not detecting
existing foreshock signals). Mindful of this, we do not adjust
the p-values but discuss our findings aware of the increased
chance of type-I errors. We also consider the dependence of
subsamples, as defined by different, lower foreshock magni-
tude thresholds in our discussion.

We calculate the power of the null-hypothesis test (POT)
to measure the probability that the test will detect a certain
effect δ. δ is a postulated difference between observed and

the ETAS-predicted number of foreshocks. In Figure 10, we
see that the power is proportional to δ, the sample size, and α
(α is not shown, and α � 0:05). We calculate the POT, as
described in Zechar et al. (2010), by comparing two syn-
thetic foreshock samples, one of which is imposed with δ, so
we expect the statistical test to reject the null hypothesis. Re-
peating this comparison 1000 times, the POT is expressed by

EQ-TARGET;temp:intralink-;df5;313;259Power � Number of correct rejections
Number of tests

: �5�

The POT is directly related to the type-II error with
Power � 1 − β, in which β is the type-II error. In cases in
which the null hypothesis is accepted, the POT tells us
how much we can trust this result. The POT tells us how
confidently the test would have detected a certain genuinely
occurring effect.

Foreshock Null-Hypothesis Test

We perform the foreshock null-hypothesis test (described
in the Null-Hypothesis Testing section) for southern
Californian foreshocks, using ETAS-fixed α as the null model
that we found to describe aftershock seismicity appropriately

Figure 8. Southern California, ETAS-fixed α: 95% confidence intervals of the effect size between ETAS-fixed α and observed after-
shocks. Same as caption of Figure 6. The color version of this figure is available only in the electronic edition.
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in the ETAS Null Model section. The result, that is, the p-val-
ues are shown in Figure 11 for different mainshock and fore-
shock magnitudes and foreshock definitions. The figure is
dominated by low p ≤ 0:05 (i.e., dark shades) for almost
all mainshock and foreshock magnitudes and foreshock def-
initions. For p ≤ 0:05, the null-hypothesis is rejected, and
foreshocks are not explained by ETAS-fixed α. Here, we dis-
cuss the results in detail and show how they promote our
understanding of the nature of foreshocks.

First, we examine whether peculiar foreshocks (that lead
to a rejection of the null hypothesis) depend on the mainshock
magnitude. We find p ≤ 0:05 for all mainshock magnitudes
and hence conclude that the foreshock behavior does not
depend on the mainshock magnitude. This is in agreement
with Brodsky (2011) and Shearer (2012), who also detect
no dependence of the foreshock behavior on the mainshock
magnitude. Considering the results of window foreshocks, we
expect to observe 128 × 0:05 � 6:4 random rejections of the
null hypothesis (type-I error). We observe more than six re-
jections: a total of 110 rejections that are hence unlikely to be
random. Exceptions, with p > 0:05, are only present when
analyzing M 4+ foreshocks of mainshocks with 5 ≤ M < 6.
A reason could be that a potential deviation is not detected;

Figure 9. Southern California, ETAS-var: 95% confidence intervals of the effect size between ETAS-var and observed aftershocks. Same
as caption of Figure 6. The color version of this figure is available only in the electronic edition.
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Figure 10. The power of the test is plotted against the number
of mainshocks for different effect sizes δ, that is, the differences in
the number of foreshocks per mainshock between the null and the
alternative hypothesis. The black horizontal line indicates the sig-
nificance level α � 0:05. The color version of this figure is avail-
able only in the electronic edition.
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hence, a type-II error occurred. Evaluating the POT at
N � 12, the number of mainshocks with 5:5 ≤ M < 6, we
see that a difference of δ � 5 (δ � 2) would be detected in
100% (58%) of cases. This indicates an increased chance
of small effects being present but going undetected. When
consulting the effect size, it is revealed that too fewM 4+ fore-
shocks are observed. This explains the acceptance of the one-
sided null-hypothesis test. The reason why too many M 4+
foreshocks for mainshocks with 5:5 ≤ M < 6 are observed
remains unclear.

Second, we consider the two different foreshock defini-
tions. The declustering method after Zaliapin et al. (2008)
distinguishes into spontaneous and clustered earthquakes.
By definition, Zaliapin foreshocks are clustered earthquakes
that precede the cluster’s mainshock. They are part of a chain
with small nearest-neighbor distances, and any occurrence of
spontaneous earthquakes would interrupt the cluster’s chain.
In contrast, the window method cannot distinguish between
clustered and spontaneous background events. We find that,
for most mainshock and foreshock magnitudes, both Zalia-
pin (81%) and window foreshocks (86%) lead to a rejection

of the null hypothesis. This means that Zaliapin and window
foreshocks are both not well constrained by the ETAS model.
The rejection for foreshocks defined through the window
method can be traced back to a surplus of both spontaneous
or clustered earthquakes. The rejection for Zaliapin fore-
shocks can only be traced back to a surplus of clustered
earthquakes. Finally, we can be sure of a surplus of clustered
earthquakes in the observed catalog, but at the same time
cannot exclude a surplus of spontaneous earthquakes. These
results are opposed to the ones by Dodge et al. (1995, 1996),
who found evidence with Coulomb stress modeling that fore-
shocks do not trigger each other. It might be that the Zaliapin
definition of clustered does not coincide with the Coulomb
stress definition of triggered, which would explain the result.
A clear answer could be obtained by applying the foreshock
null-hypothesis test to triggered foreshocks under the
Coulomb stress model.

Third, we investigate the spatiotemporal characteristics
of foreshocks by examining foreshocks defined in differently
sized windows. We find similar p-values, mostly p ≤ 0:05,
for all windows, considering all mainshock magnitudes. That

T
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M

Figure 11. Southern California, ETAS-fixed α: p-values of the null-hypothesis test are plotted for different foreshock definitions and
distinguished for several mainshock (rows) and foreshock (columns) magnitudes. Foreshocks are defined (a) within a space–time window
and (b) applying the Zaliapin declustering method. The subplots of the window definitions refer to different space–time windows, in which
the y axis of each subplot indicates the spatial window (km) and the x axis indicates the temporal window (day). The null hypothesis is
rejected for p ≤ 0:05 (dark shades).
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means evidence against the null hypothesis is present at all
spatiotemporal foreshock definitions. This result is opposed
to the one obtained by Felzer (2004), who found a break in
the distribution of foreshock-to-mainshock distances at
about 10 km.

Indifference of the rejections toward the window size for
all mainshock sizes also implies that there is no correlation
between the spatiotemporal size of the preparatory zone and
the mainshock size. This result is also obtained by Felzer
(2004) using a correlation test, in contradiction to the findings
of Lippiello et al. (2012, 2017), who found that the spatial
distribution of foreshocks depends on mainshock magnitude.
We think that their observation can probably be explained by a
sample-size effect at different mainshock magnitudes. Under-
sampling a power law distribution with �x�D�−q increasesD
and leaves q constant (Seif et al., 2017), which is precisely
what Lippiello et al. (2012, 2017) observed.

Fourth, we examine whether peculiar foreshock behav-
ior depends on the lower-magnitude threshold of the fore-
shocks. Our suspicion is that an increased sample size at a
lower-magnitude threshold could make potential foreshock
signals more conspicuous. We find however, that the p-value
does not depend on the lower-magnitude threshold of the
foreshocks; hence, peculiar foreshock behavior is not mag-
nitude dependent. This result does not support the findings of
Mignan (2014) that suggest that peculiar foreshock behavior
emerges when analyzing foreshocks that are at least three
orders of magnitude smaller than the mainshock. Mignan
(2014) points out that most studies finding no deviation from
general seismicity conclude this after stacking the data.
Stacking in this case means averaging both certain observa-
tions and time series over multiple mainshocks. We also be-
lieve that the methodology is critical for detecting foreshock
patterns. In the first case, mean values are not necessarily
always representative of a distribution, especially an abnor-
mal one. In the second case, it must be assumed that all time
series, that are themselves distributions, follow the same
process, so they can be stacked to obtain a single represen-
tative distribution. This implies that all mainshocks have to
be assumed to experience the same initial processes, in which
less-frequent anomalous features may be lost. We deal with
the first case, because we have a single observation for each
mainshock, the number of foreshocks, and choose a method
that takes into account the distribution of the observed data.
This could explain why we detect peculiar foreshock behav-
ior at all foreshock magnitudes.

Even though peculiar foreshock behavior is observed for
all foreshock magnitude thresholds, small earthquakes, due to
their frequent occurrence, might highlight potential differen-
ces most. This is confirmed by the effect size in Figure 12 that
displays the most marked deviations between the observed
and ETAS-predicted number of foreshocks for M 6+ main-
shocks at the lowest magnitude threshold, M 2.5+. Here,
the largest effect size of δ � 12 is observed. At the same time,
the effect size varies considerably, with confidence intervals
between 1 ≤ δ ≤ 12. Given that the largest effect size is ob-

served for the lowest foreshock magnitudes, foreshock signals
might be easiest to detect from small foreshocks. The effect
size generally supports the findings of the null-hypothesis test,
with mainly positive confidence intervals, meaning more ob-
served than predicted foreshocks.

The reader might have noticed, that in comparison to
other mainshock-magnitude bins with a size of 0.5, main-
shocks summarized by M 6+ contain magnitudes as high as
M � 7:3. To visualize potential differences in the foreshock
behavior of the individual mainshocks, we plot their survival
function 1 − cdf�X � Fsn� on a map (Fig. 13). We see that
the largest mainshocks withM 7+ have the largest number of
foreshocks.

Conclusion

The present study provides an answer to the fundamen-
tal question of whether foreshocks are caused by a different
process than general seismicity. We find that foreshocks
deviate significantly from a uniform triggering model in
Southern California. We reach this conclusion after perform-
ing a null-hypothesis test, in which we calculate the joint
probability of drawing observed numbers of foreshocks or
higher numbers under ETAS.

The null-hypothesis test requires a null model that
describes observed seismicity sufficiently well. After testing
three different models in Southern California for their perfor-
mance in describing aftershocks, we found that ETAS with
α � β describes 77% of all spatiotemporal windows (69% of
Zaliapin). Deviations of the data from the model could be
traced back to spatial-variable seismicity and swarm seismic-
ity. In northern California and Italy, we could not determine
an adequate null model: not adequate means that the poten-
tial null models could only explain aftershocks in about 40%
of the cases and that the origin of the deviations could not be
traced back. Therefore, northern Californian and Italian fore-
shocks are not investigated in this study, and all presented
results refer to southern Californian foreshocks.

We find that the ETAS foreshock distributions are best rep-
resented by a stretched exponential, and its parameters depend
on the foreshock definition and the lower-magnitude threshold
of the foreshocks but seem to be independent of the mainshock
magnitude. Observed foreshocks deviate from ETAS fore-
shocks and their models, and we could not determine a best-
fitting model. This could be due to either too few data or that
the data follows none of the considered distributions.

With the use of two different foreshock definitions, we
are able to investigate possible mechanisms for foreshock
occurrence. We defined foreshocks within a spatiotemporal
window and with the Zaliapin et al. (2008) declustering
method. Although the window foreshocks are defined com-
pletely independent of each other, by simply counting earth-
quakes within a window, the Zaliapin foreshocks reflect the
interactions between the foreshocks. Only clustered earth-
quakes, defined by the spatiotemporal distances between
foreshocks, as well as their magnitudes, comprise a chain of
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foreshocks. The observed rejection of the null hypothesis for
both window and Zaliapin foreshocks indicates that a surplus
of clustered earthquakes is likely responsible for the rejec-
tion. However, an additional surplus of spontaneous earth-
quakes can also not be excluded.

The rejection of the null hypothesis for window and
Zaliapin foreshocks does not depend on the foreshock mag-
nitude, so we conclude that small earthquakes do not convey
additional information. However, the effect size depends
on the lower-magnitude threshold for foreshocks. Smaller
thresholds lead to a larger sample size, so the effect size is
larger. At the same time, the 95% confidence intervals for
small thresholds are large. For M 6+ mainshocks, the effect
size varies between 1 ≤ δ ≤ 12 at Mcut � 2:5 and 0 ≤ δ ≤ 1

at Mcut � 4. From an operational perspective, larger effects
at smaller Mcut are more easily detectable and might be used
to identify foreshock patterns in the future.

Regarding the spatiotemporal occurrence of foreshocks,
we do not find that the foreshock area scales with the main-
shock magnitude. Thus, the earthquake preparation zone
provides no indication of how large a future mainshock
will be.

The solid performance of our null-hypothesis test in
detecting potential differences between the null and alterna-
tive hypotheses is confirmed by the power of the test.
Differences of δ � 5 (δ � 2) can be detected with a proba-
bility of 100% (> 50%) in southern California.

Summing up all the findings, we conclude that foreshocks
are generated by a different process than general seismicity
and that they are a feature of all mainshock sizes. It still
remains unclear, though, whether the foreshock-generating
process can be explained by top-down loading or bottom-
up triggering. The fact that the general seismicity-triggering
model is unable to explain foreshocks does not mean that a
model with different parameters would likewise be unable
to explain foreshocks. We see this in the example of swarm
seismicity: a model with low α or a temporally variable back-
ground rate (Hainzl et al., 2008) describes their occurrence
well. Similarly, foreshocks might be modeled by temporally
variable ETAS parameters. In that case, we see a potential
problem of overfitting individual foreshock sequences with
a temporary variable ETAS model. ETAS consist of a high
number of parameters, in our case seven, and there is little
foreshock data.

Figure 12. Southern California, ETAS-fixed α: 95% confidence intervals of the effect size between ETAS-fixed α and observed fore-
shocks. Same as caption of Figure 6. The color version of this figure is available only in the electronic edition.
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The knowledge gained in this study will hopefully pro-
vide a basis on which future research on earthquake forecast-
ing can be built.

Data and Resources

Earthquake data for southern California were obtained
from the Southern California Data Center (doi: 10.7909/
C3WD3xH1) at http://service.scedc.caltech.edu/ftp/catalogs/
hauksson/Socal_DD/hs_1981_2014_comb_K4_A.cat_so_SC
SN_v01 (last accessed April 2016). Earthquake data for
Northern California were obtained from the Northern Califor-
nia Earthquake Data Center (doi: 10.1029/2007JB005479,
2008; doi: 10.1785/0120080294, 2009; last accessed April
2016). The Advanced National Seismic System (ANSS)
authoritative region data were downloaded from http://
www.quake.geo.berkeley.edu/anss/anss-detail.html (last ac-
cessed April 2016).
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