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ABSTRACT

Seismic waves that are recorded by near-surface sensors are usu-
ally disturbed by strong noise. Hence, the recorded seismic data
are sometimes of poor quality; this phenomenon can be char-
acterized as a low signal-to-noise ratio (SNR). The low SNR of
the seismic data may lower the quality of many subsequent seis-
mological analyses, such as inversion and imaging. Thus, the
removal of unwanted seismic noise has significant importance.
In this article, we intend to improve the SNR of many seismo-
logical datasets by developing new denoising framework that is
based on an unsupervised machine-learning technique. We lev-
erage the unsupervised learning philosophy of the autoencoding
method to adaptively learn the seismic signals from the noisy
observations. This could potentially enable us to better represent
the true seismic-wave components. To mitigate the influence of
the seismic noise on the learned features and suppress the trivial
components associated with low-amplitude neurons in the hid-
den layer, we introduce a sparsity constraint to the autoencoder
neural network. The sparse autoencoder method introduced in
this article is effective in attenuating the seismic noise. More
importantly, it is capable of preserving subtle features of the data,
while removing the spatially incoherent random noise. We apply
the proposed denoising framework to a reflection seismic image,
depth-domain receiver function gather, and an earthquake stack
dataset. The purpose of this study is to demonstrate the frame-
work’s potential in real-world applications.

INTRODUCTION

Seismic phases from the discontinuities in the Earth’s interior
contain significant constraints for high-resolution deep Earth
imaging; however, they sometimes arrive as weak-amplitude
waveforms (Rost and Weber, 2001; Rost and Thomas,
2002; Deuss, 2009; Saki et al., 2015; Guan and Niu, 2017,
2018; Schneider et al., 2017; Chai et al., 2018). The detection
of these weak-amplitude seismic phases is sometimes challeng-
ing because of three main reasons: (1) the amplitude of these
phases is very small and can be neglected easily when seen next
to the amplitudes of neighboring phases that are much larger;
(2) the coherency of the weak-amplitude seismic phases is seri-
ously degraded because of insufficient array coverage and

spatial sampling; and (3) the strong random background noise
that is even stronger than the weak phases in amplitude makes
the detection even harder. As an example of the challenges pre-
sented, the failure in detecting the weak reflection phases from
mantle discontinuities could result in misunderstanding of the
mineralogy or temperature properties of the Earth interior.

To conquer the challenges in detecting weak seismic phases,
we need to develop specific processing techniques. In earthquake
seismology, in order to highlight a specific weak phase, record-
ings in the seismic arrays are often shifted and stacked for differ-
ent slowness and back-azimuth values (Rost and Thomas, 2002).
Stacking serves as one of the most widely used approaches in
enhancing the energy of target signals. Shearer (1991a) stacked
long-period seismograms of shallow earthquakes that were
recorded from the Global Digital Seismograph Network for 5 yr
and obtained a gather that shows typical arrivals clearly from the
deep Earth. Morozov and Dueker (2003) investigated the effec-
tiveness of stacking in enhancing the signals of the receiver func-
tions. They defined a signal-to-noise ratio (SNR) metric that was
based on the multichannel coherency of the signals and the inco-
herency of the random noise, and they showed that the stacking
can significantly improve the SNR of the stacked seismic trace.
However, stacking methods have some drawbacks. First, they do
not necessarily remove the noise present in the signal. Second,
they require a large array of seismometers. Third, they require
coherency of arrivals across the array, which are not always about
earthquake seismology. From this point of view, a single-channel
method seems to be a better substitute for improving the SNR of
seismograms (Mousavi and Langston, 2016; 2017).

In the reflection seismology community, many noise
attenuation methods have been proposed and implemented in
field applications over the past several decades. Prediction-based
methods utilize the predictive property of the seismic signal to
construct a predictive filter that prevents noise. Median filters
and their variants use the statistical principle to reject Gaussian
white noise or impulsive noise (Mi et al., 2000; Bonar and
Sacchi, 2012). The dictionary-learning-based methods adap-
tively learn the basis from the data to sparsify the noisy seismic
data, which will in turn suppress the noise (Zhang, van der Baan,
et al., 2018). These methods require experimenters to solve the
dictionary-updating and sparse-coding methods and can be very
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expensive, computationally speaking. Decomposition-based
methods decompose the noisy data into constitutive compo-
nents, so that one can easily select the components that primarily
represent the signal and remove those associated with noise. This
category includes singular value decomposition (SVD)-based
methods (Bai et al., 2018), empirical-mode decomposition
(Chen, 2016), continuous wavelet transform (Mousavi et al.,
2016), morphological decomposition (Huang et al., 2017), and
so on. Rank-reduction-based methods assume that seismic data
have a low-rank structure (Kumar et al., 2015; Zhou et al.,
2017). If the data consist of κ complex linear events, the con-
structed Hankel matrix of the frequency data is a matrix of rank
κ (Hua, 1992). Noise will increase the rank of theHankel matrix
of the data, which can be attenuated via rank reduction. Such
methods include Cadzow filtering (Cadzow, 1988; Zu et al.,
2017) and SVD (Vautard et al., 1992).

Most of the denoising methods are largely effective in
processing reflection seismic images. The applications in more
general seismological datasets are seldom reported, partially
because of the fact that many seismological datasets have
extremely low data quality. That is, they are characterized by
low SNR and poor spatial sampling. Besides, most traditional
denoising algorithms are based on carefully tuned parameters
to obtain satisfactory performance. These parameters are usually
data dependent and require a great deal of experiential knowl-
edge. Thus, they are not flexible enough to use in application to
many real-world problems. More research efforts have been dedi-
cated to using machine-learning methods for seismological data
processing (Chen, 2018a,b; Zhang, Wang, et al., 2018; Bergen
et al., 2019; Lomax et al., 2019; McBrearty et al., 2019).
Recently, supervised learning (Zhu et al., 2018) has been success-
fully applied for denoising of the seismic signals. However, super-
vised methods with deep networks require very large training
datasets (sometimes to an order of a billion) of clean signals
and their noisy contaminated realizations. In this article, we
develop a new automatic denoising framework for improving
the SNR of the seismological datasets based on an unsupervised
machine-learning (UML) approach; this would be the autoen-
coder method. We leverage the autoencoder neural network to
adaptively learn the features from the raw noisy seismological
datasets during the encoding process, and then we optimally
represent the data using these learned features during the decod-
ing process. To effectively suppress the random noise, we use the
sparsity constraint to regularize the neurons in the hidden layer.
We apply the proposed UML-based denoising framework to a
group of seismological datasets, including a reflection seismic
image, a receiver function gather, and an earthquake stack. We
observe a very encouraging performance, which demonstrates its
great potential in a wide range of applications.

METHOD

Unsupervised Autoencoder Method
Wewill first introduce the autoencoder neural network that we
use for denoising seismological datasets. Autoencoders are
specific neural networks that consist of two connected parts

(decoder and encoder) that try to copy their input to the out-
put layer. Hence, they can automatically learn the main features
of the data in an unsupervised manner. In this article, the net-
work is simply a three-layer architecture with an input layer, a
hidden layer, and an output layer. The encoding process in the
autoencoder neural network can be expressed as follows:

EQ-TARGET;temp:intralink-;df1;323;673p � ξ�W1x� b1�; �1�

in which x is the training sample (x∈Rn), ξ is the activation
function.

The decoding process can be expressed as follows:

EQ-TARGET;temp:intralink-;df2;323;608x
⌢

� ξ�W2x� b2�: �2�

In equations (1) and (2), W1 is the weighting matrix between
the input layer and the hidden layer; b1 is the forward bias
vector; W2 is the weighting matrix between the hidden layer
and output layer; b2 is the backward bias vector; and ξ is the
activation function. In this study, we use the softplus function
as the activation function:

EQ-TARGET;temp:intralink-;df3;323;505ξ�x� � log�1� ex�: �3�

Sparsity Regularized Autoencoder
To mitigate the influence of the seismic noise on the learned
features and suppress the trivial components associated with
low-amplitude neurons in the hidden layer, we apply a sparsity
constraint to the hidden layer; that is, the output or last layer of
the encoder. The sparsity constraint can help dropout the
extracted nontrivial features that correspond to the noise and
a small value in the hidden units. It can thus highlight the most
dominant features in the data—the useful signals. The sparse
penalty term can be written as follows:

EQ-TARGET;temp:intralink-;df4;323;335~p � R�p�; �4�

in which R is the penalty function:

EQ-TARGET;temp:intralink-;df5;323;293R�p� �
X

h

j�1

KL�μ∥pj�; �5�

in which h is the number of neurons in the hidden layer and μ
is a sparsity parameter. The sparsity parameter μ typically is a
small value close to zero (e.g., 0.05). In other words, we would
like the average activation of each hidden neuron to be close to
0.05. To satisfy this constraint, the hidden unit activations
must mostly be near 0. pj denotes the jth element of the vector
p. KL�·� is the Kullback–Leibler divergence (Kullback and
Leibler, 1951) function:

EQ-TARGET;temp:intralink-;df6;323;146KL�μ∥pj� � μ log
μ

pj
� �1 − μ� log

1 − μ

1 − pj
: �6�

An important property of the KL function is that
KL�μjjpj� � 0 if μ � pj , otherwise its value increases
monotonically as pj diverges from μ.
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The cost function thus becomes:

EQ-TARGET;temp:intralink-;df7;40;733J�W; b� �
1

2
kx
⌢

−xk22 � βR�p�; �7�

in which β is the weight controlling the sparsity
penalty term. The cost function can be mini-
mized using a stochastic gradient method. The
gradients with respect to W and b can be
derived from the backpropagation method
(Vogl et al., 1988).

We can extract the feature learned by the
ith unit in the hidden layer and plot it in a 2D
image. The learned feature of the ith unit cor-
responds to the part of the input image x that
would maximally activate the ith hidden unit.
Assume that the input x is normalized in the
sense that kxk2 ≤ 1, then the input part of
the training data that maximally activates the
ith hidden unit is given by:

EQ-TARGET;temp:intralink-;df8;40;510yj �
W

i;j
1

��������������������������

P

N2

j�1�W
i;j
1 �

2
q ; �8�

in which yj denotes the jth element in the fea-
ture image corresponding to the ith hidden
unit. Here, y denotes a vectorized 2D image
with size N ×N . To view the feature in a 2D
view, y needs to be rearranged into a 2D matrix
and be plotted.

Patching and Unpatching
The learning process uses patch-based samples. In this article,
preparing the training samples from the seismological datasets
is referred to as the patching process. Conversely, reconstruction
of the seismological datasets from filtered patches is referred to
as the unpatching process. The patching and unpatching proc-
esses are illustrated in Figure 1. In the patching process, we slide a
window of the patch size from the top to the bottom, as well as
the left to the right, of the 2D seismic data. Thus, we obtain a
patch in each sliding step. To avoid the discontinuity between
patches when reconstructing, we arrange it so that each pair of
neighbor patches shares an overlap. The size of the overlapping
part is called the shift size. In this article, we define the shift size
as half of the patch size. A large patch size would cause the learn-
ing process to miss small-scale features, whereas a small patch size
would make the learning process incapable of learning meaning-
ful waveform features. In this article, we define the patch size as
approximately half of the dominant wavelength of data. The
patches obtained from the sliding process are arranged as a
2D matrix, which is incorporated into the learning process. In
the unpatching process, we reinsert each filtered patch from the
2D data matrix back into the seismological datasets. In the over-
lapping part of the reconstructed trace, we take the average of
the two neighbor patches. The proposed UML algorithm is not
limited to multichannel seismic data. It can also be used to learn

the features from 1D seismic data, such as sparsely recorded
earthquake data or microseismic data.

RESULTS

We first apply the proposed algorithm to a reflection seismic
image. The image is presented in Figure 2a. The 2D seismic
image is extracted from a migrated 3D seismic image that is
related to an oilfield in China. There is significant noise in the
2D seismic image, which compromises the coherency of the
seismic events. There are several complicated structures in this
2D seismic image. First, the amplitude exhibits a strong varia-
tion from the left to the right. Second, there are some weak
events in the 2D section, particularly in the deep part around
1.7 s. Third, the strong noise causes obvious discontinuities of
the events, which makes the tracking of most seismic events
difficult. The denoised data using the proposed method are
shown in Figure 2d. The removed noise from the noisy data
using the proposed method is plotted in Figure 2g. Upon the
removal of the random noise, the seismic events become more
continuous, and the weak events in the deep part become more
evident. Additionally, the spatial amplitude variations in the
dataset are well preserved. In the removed noise section
(Fig. 2g), we do not see much coherent energy, which indicates
that the removed noise is purely random noise and that we are
not damaging any useful signals. In this example, we compare

(a)

(b)

▴ Figure 1. Cartoons illustrating the principles of (a) patching and (b) unpatching.

The color version of this figure is available only in the electronic edition.
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the performance of the proposed algorithm with the most
widely used methods in the industry, namely the frequency-
space domain prediction-based method (Canales, 1984) and
the band-pass-filtering method. The result from the prediction-
based method is displayed in Figure 2b, where we use a filter
length that is equal to six points. The removed noise corre-
sponding to the prediction-based method is shown in
Figure 2e. However, from the denoised data shown in
Figure 2b, we can observe that there is a significant amount of
residual noise left in the image. The result from the band-pass-
filtering method is shown in Figure 2c, where we use it to pre-
serve the frequency contents between 0 and 25 Hz. It is diffi-
cult to compromise the signal preservation and noise removal
for the band-pass-filtering method. If we use a higher cutoff
frequency, then more noise will be left in the result, and the
denoising performance will not be obvious. If we use a lower
cutoff frequency, we will inevitably remove some signal’s
energy. The removed noise is shown in Figure 2f, which con-
tains significant coherent signals.

Because there is no ground-truth solution in the real data
example, we cannot use a quantitative metric (e.g., the SNR) to
evaluate the denoising performance. However, we can use the
local similarity metric to quantitatively measure the signal

damage. The local similarity metric is based on the assumption
that the denoised signal and removed noise should be orthogo-
nal to each other and have low similarity locally. The detailed
introduction of utilizing the local similarity metric to evaluate
denoising performance is given in Chen and Fomel (2015). For
two competing methods, when a similar amount of noise is
removed, more signal damages indicate a poorer denoising per-
formance. We calculate the local similarity maps between the
denoised data and the removed noise for the proposed method
and the prediction-based method, and we show them in
Figure 3. In the local similarity maps, the high local similarity
anomaly shows where the denoised signal and the removed
noise are very similar; it thus points out where large signal dam-
age (or leakage) exists. From Figure 3, it is obvious that the local
similarity values of the prediction-based method and the band-
pass-filtering method are higher than that of the proposed
method. Thus, the proposed method helps preserve useful sig-
nals more effectively than the prediction-based method. It is
worth noting that the same concept was also proposed in
Li et al. (2018), where the local similarity is defined as the sig-
nal consistency between the examined station and its nearest
neighbors. In this article, the local similarity is a more general
concept to evaluate the closeness of two arbitrary signals.
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▴ Figure 2. Denoising performance of the reflection seismic image. (a) Reflection seismic image; (b) denoised data using the prediction-

based method; (c) denoised data using the band-pass-filtering method; (d) denoised data based on the unsupervised machine learning

(UML) method; (e) removed noise corresponding to (b); (f) removed noise corresponding to (c); and (g) removed noise corresponding to (d).

The color version of this figure is available only in the electronic edition.
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Figure 4 shows the extracted 64 features using the
proposed UML algorithm. Each feature is rearranged into a
40 × 40 2D matrix. It is clear that the extracted features cor-
respond to different structural features of the seismic image.

We then apply the proposed denoising algorithm to a
receiver function dataset. Figure 5a shows a stacked common
receiver gather for the WALA station at Waterton Lake,
Alberta. The WALA station belongs to the Canadian
National Seismograph Network (Gu et al., 2015). Each col-
umn in the matrix (Fig. 5a) corresponds to the stacked receiver
function data of one specific epicentral distance corresponding
to the WALA station. The two green solid lines in Figure 5a
show the expected arrivals of the converted waves, P410s and
P660s. To enhance the structure revealed from the receiver
function data, the time-domain receiver function gather
(Fig. 5a) is first transformed to the depth domain to correct
the phase moveout; then, all receiver function data of different
epicentral distances are stacked to output the structure, such
as the 410 and 660 discontinuities, underneath the WALA
station. The converted receiver function data in the depth
domain are shown in Figure 5b, where the seismic phases are
well aligned horizontally. However, because of the strong noise,
the stacked receiver function data and the inferred Earth struc-
ture are of low fidelity and thus not reliable. We apply the
proposed method to filter the strong random noise and obtain
a much better receiver function gather with obviously more
coherent seismic phases, which is plotted in Figure 5c. The
removed noise from the noisy receiver function data (Fig. 5b)
is shown in Figure 5d. From the removed noise, we can barely
see that obvious signal energy and the noise are mostly spatially
incoherent; this indicates a signal-preserving denoising perfor-
mance of the proposed method.

To evaluate the fidelity of filtered receiver function gather,
we use the local similarity metric. We calculate the local simi-
larity between denoised data and noisy data and show it in
Figure 6b. The high local similarity anomaly in Figure 6a indi-
cates where the denoised signal is distinctly close to the noisy
data and thus is of high fidelity. It is also clear that the 410
and 660 arrivals are marked with high fidelity, which ensures
more reliable structures of the discontinuities within the mantle
transition zone (MTZ) revealed from the receiver function
gather. Figure 6b plots the local similarity between the removed
noise and the noisy data. It is clear that this local similarity map
is mostly zero and only contains a few areas with a high anomaly.
The high anomaly indicates locations where the denoising algo-
rithm may damage the useful signals. Because most areas are
marked with low local similarity, it demonstrates that the pro-
posed method does not cause significant damages to the useful
converted-wave signals. The stacked traces from the raw depth-
domain data and the denoised data are shown in Figure 5e. The
red line plots the filtered data, and the blue dashed line plots
the raw data. The two green dashed lines point out the expected
positions of the 410 and 660 km discontinuities. From
Figure 5e, we observe clearly that the waveforms corresponding
to the 410 and 660 km discontinuities are of significantly higher
resolutions. Because the amplitude in the denoised data is of
higher fidelity due to the much reduced noise, we conclude that
the proposed denoising method helps image more reliable MTZ
discontinuities with a higher resolution.

Finally, we apply the proposed denoising method to an
earthquake stack data. The dataset was originally used in
Shearer (1991a,b). The seismic data of many earthquakes are
stacked according to their epicentral distances (in degrees). To
further improve the SNR of the final stack, the datasets from
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▴ Figure 3. Local similarity between the denoised data and the removed noise. The high similarity anomaly indicates areas with serious

signal damages. (a) Local similarity corresponding to the prediction-based method. (b) Local similarity corresponding to the band-pass-

filtering method. (c) Local similarity corresponding to the proposed method. Note the similarity anomalies in (a) and (b) are obviously

higher than in (c). The color version of this figure is available only in the electronic edition.
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different earthquakes are also stacked. The dataset is then
arranged in a 2D format, with the first axis denoting the
recording time and the second axis denoting the epicentral dis-
tances. We can see a lot of seismic phases highlighted by the
stack data in Figure 7a. However, there is still a lot of random
noise existing in the earthquake gather. To remove the random
noise, we apply the proposed UML method to the earthquake
stack data. The denoised earthquake stack data are shown in
Figure 7b. The seismic phases have been obviously enhanced,
and the coherency of the main-wave components have become
stronger; this is particularly true of the relatively weak seismic
phases, which make the interpretation and further usages of
these seismic phases more reliable. Figure 7c plots the removed
noise from the raw stack data. Only a few obviously coherent
signal components corresponding to the strongest phases are

seen in the removed noise, which indicates that the proposed
method preserves most weak seismic phases well.

DISCUSSIONS

Denoising Accuracy and Reliability
To test the denoising accuracy, we create a synthetic example and
conduct the denoising tests on the synthetic data. The advantage
of the synthetic data test is that we have the ground-truth sol-
ution and then can evaluate the denoising performance by com-
paring the filtered data with the ground-truth solution, which
would be the noise-free data. The synthetic example is shown
in Figure 8. Figure 8a plots the clean data. We manually add
some random noise into the clean data and obtain noisy data
in Figure 8b. Figure 8c and 8d shows two denoised data using
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▴ Figure 4. Learned features from the UML method. The color version of this figure is available only in the electronic edition.
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the prediction-based (or predictive) denoising method and the
proposed UMLmethod, respectively. The comparison is positive
in supporting the proposed method compared with the ground-
truth solution. The denoised data using the predictive method
still contains significant residual noise, but the denoised data
using the proposed method are much closer to clean data. It
is clear that the proposed method even preserves very subtle fea-
tures in the data, such as the weak energy in the right up corner
of the image. Because in this example we have the clean data, we
can use the following SNRmetric (Liu et al., 2009; Chen, 2017)
to evaluate the denoising accuracy:

EQ-TARGET;temp:intralink-;df9;311;201SNR � 10 log10
ksk22

ks − s
⌢

k22;
�9�

in which s denotes the noise-free data and s
⌢denotes the noisy

or denoised data. The calculated SNR of the noisy data (Fig. 8b)
is 1.63 dB. The predictive method increases the SNR to 6.21 dB,
whereas the proposed method increases the SNR further to
9.23 dB. The much higher SNR indicates that the proposed
method can obtain higher accuracy, thus the resulting data are
more reliable.
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depth conversion; (c) denoised data using the proposed method; and (d) removed noise using the proposed method. The two green solid
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Effect of Noise
To investigate the effect of noise to the denoising performance
of the proposed algorithm, we conduct several denoising tests
in the case of different noise variances. We calculate SNRs for
the noisy data, denoised data using the predictive method, and
denoised data using the proposed method, when noise variance
increases from 0.1 to 1. The calculated SNRs for three datasets
are plotted in Figure 8e. From the diagrams, we can see that
when noise level increases, the SNR of all three datasets decreases
smoothly. This indicates that both the proposed denoising algo-
rithm and the predictive method are robust to noise. Here,
robust means that there will not be unstable issues when the
noise level becomes very strong. However, the proposed method
denoted by the blue line is always above the red line, indicating
superior performance of the proposed method. Besides, the slope
of the blue curve is slightly smaller than the red curve, indicating
that the proposed method is slightly more insensitive to noise
than the predictive method.

Boundary Effect
The boundary effect may occur when patching and unpatching
the seismological datasets for training or prediction purposes.
For an arbitrary size of the input data, it may require extension
of the original data to create samples that cover the whole seis-
mic section. For example, for the reflection seismic image
shown in Figure 2a, the size is 512 × 128. When using a patch
size of 40 × 40 with a shift size of 20 in each direction (vertical
or horizontal), we need to extend the original seismic image
to the size of 520 × 140, as shown in Figure 9a. We can see
a narrower and a wider blank area on the right and bottom
sides of the image, which are the extended areas. However, con-
structed patches from these blank areas have distinct features
compared with patches from other areas, such as the patches
shown in Figure 9d. There are obvious brown stripes in
Figure 9d, indicating the patches created from the right and
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bottom boundaries. In the proposed algorithm, we use ran-
domly selected patches from the input seismic image as the
training dataset and then use all the regularly selected patches
from the input data for testing; that is, we use them for pre-
diction and denoising. If the boundary patches are not
included in the training dataset, the algorithm will not be accu-
rate in predicting the testing dataset. Ideally, those brown
stripes in Figure 9d should be preserved during the prediction
process; however, due to insufficient coverage of the training
datasets, the predicted datasets, as shown in Figure 9e, will be
far from the corrected data. The incorrect prediction will result
in denoised data with strong boundary artifacts, which is
shown in Figure 9b. To avoid the boundary effect, we need
to include the boundary patches in the training dataset, so that
the trained machine can take the boundary extension of the
original seismic image into consideration and make a correct

prediction of the input testing datasets. The predicted testing
data after including the boundary patches are shown in
Figure 9f, which preserves the brown stripes (the boundaries)
well. The reconstructed denoised data via an unpatching step
from Figure 9f is shown in Figure 9c, which no longer contains
the boundary artifacts.

Effect of the Training Data Size
It is known that the training data size may affect the perfor-
mance in many machine-learning applications. Here, we
intend to investigate how the training data size will affect
the denoising performance in the proposed algorithm. We
increase the number of randomly selected patches for training
from 1000 to 6000. For each training data size, we conduct the
training and prediction separately. We calculate the SNRs for
each case and plot the SNR diagram with respect to variable
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training data size in Figure 10a. From Figure 10a, it is clear that
SNR increases when the number of training patches increases.
The SNR increases quickly when training data size increases
from 1000 to 2000, then gradually increases from 10.46 to
12.54 dB when the training data size increases from 2000
to 5000. The SNR is nearly unchanged as the training data
size changes from 5000 to 6000. This test indicates that a sig-
nificantly large training data size can help obtain a better
denoising performance; however, when the training data size
is sufficiently large, the improvement of denoising performance
is negligible.

Effect of the Patch Size
We also test the effect of the patch size on the denoising per-
formance. We change the patch size from 20 to 60 and calcu-
late the SNRs in different patch sizes. The SNR diagram with
respect to variable patch size is shown in Figure 10b. From
Figure 10b, we can observe that the SNR first increases when
patch size increases from 20 to 40, and then it decreases when

the patch size changes from 40 to 60. This test tells us that an
appropriate patch size needs to be adjusted to obtain the best
denoising performance. This phenomenon can be explained by
the fact that a large patch size would cause the learning process
to miss small-scale features, whereas a small patch size would
make the learning process incapable of learning meaningful
waveform features. Thus, we suggest defining the patch size
as approximately half of the dominant wavelength of data.

Effect of the Shift Size
Finally, we test the effect of the shift size on the denoising
performance. We increase the shift size from 2 to 30 and
compute the SNRs for different shift sizes. A smaller shift size
corresponds to a large overlap between neighbor patches, as
explained at the beginning of this article. The SNR diagram
of the SNRs in different cases is shown in Figure 10c. It is
evident from Figure 10c that the SNR decreases monotonically
when the shift size increases from 2 to 30 points. From this
test, we conclude that a large overlap between patches will help
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▴ Figure 9. (a–c) Demonstration of the edge effect. (a) Extended image for constructing the patches with size 40 × 40. (b) The denoised

data when the boundary patches are not considered in the training samples. (c) The denoised data when the boundary patches are

included in the training samples. (d–f) The comparison of the patches constructed from data shown in (a–c). (d) Patches constructed from

the extended image. (e) Patches after applying the trained encoding and decoding network when not including the boundary patches.

(f) Patches after applying the trained encoding and decoding network when considering the boundary patches. The color version of this

figure is available only in the electronic edition.
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obtain a better denoising performance. However, a larger over-
lap between patches will create a large number of redundant
patches for the training process, which can be much more com-
putationally expensive. Thus, an appropriate selection of the
shift size to balance denoising performance and computational
efficiency needs to be carefully designed. In this article, we sim-
ply choose half of the patch size as the shift or overlapping size.

CONCLUSIONS

Many types of seismological datasets contain strong seismic
noise, which may impede the effective usage of these datasets for
imaging and inversion purposes. We introduced a new denoising
framework for improving the SNR of different types of seismo-
logical datasets based on an unsupervised machine-learning
method. We utilize the autoencoder algorithm to adaptively
learn the features from the raw noisy seismological datasets
and use the sparse constraint to suppress the learned trivial fea-
tures that may be associated with partial noise components. The
selection of appropriate training samples is important to the
learned features and also greatly affects the overall denoising per-
formance. We use randomly selected patches that densely cover
the whole dataset to obtain a satisfactory result. However, a
more intelligent patch selection strategy is worth investigating
in future research. Because of the nature of UML, the proposed
denoising framework does not rely on carefully defined labels for
the training dataset and thus can be much more flexible in prac-
tice. The applications on a multichannel reflection seismic
image, a receiver function gather, and an earthquake stack data
demonstrate that the proposed denoising framework can obtain
better performance as opposed to the state-of-the-art competing
methods. Most importantly, the proposed denoising algorithm
can preserve subtle features in the seismic data while removing
the spatially incoherent random noise.

DATA AND RESOURCES

Waveform data were collected from Incorporated Research
Institutions for Seismology (IRIS) Data Services (DS;
http://ds.iris.edu/ds/nodes/dmc/). The facilities of IRIS-DS,
specifically the IRIS Data Management Center, were used
for access to waveform, metadata, and products required in this
study. The IRIS-DS is funded through the National Science
Foundation (NSF); specifically, the GEODirectorate is funded
through the Instrumentation and Facilities Program of the NSF.
The reflection seismic data were requested from the Madagascar
open-source platform (www.ahay.org). Computations of training
and testing were done using the TensorFlow package (https://
github.com/tensorflow/tensorflow). All websites were last accessed
in December 2018.
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